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Abstract

This thesis examines the applications of the

generalized inverse of a matrix. In particular, use is made

of the generalized inverse of a matrix containing variable

elements. Such matrices are referred to as multiparameter,

polynomial, or variable element matrices. The notion of a

generalized inverse in fact generalizes the concept of a

matrix inverse. A matrix inverse exists only for square.

non-singular matrices. The generalized inverse extends this

notion to non-square, singular matrices. The classical

matrix inverse, when it exists, is a unique element of the

set of generalized inverses for the matrix.

Many modern problems involve multiparameter matrices.

The ability to obtain inverses for such matrices, both

singular and non-singular, is a necessity in solving these

problems.

This thesis consolidates the theory of generalized

inverses, including extensions to multiparameter matrices.

An in depth discussion is made of the ST method for

computing all generalized inverse- of a matrix as well as

the strong interface between the ST method and the

Fundamental Theorem of Linear Algebra. Finally selected

application problems are solved demonstrating the utility of

the generalized inverse in such problems. ~j<

viii



NONLI NEAR OPTI I ZATI ON I NVOLVI NG

POLYNOMI AL MATRI CES AND THEI R

GENERALI ZED I NVERSES

I. Introduction

Back around

This thesis primarily involves the solving of highly

nonlinear optimization problems. The approach taken is to

focus on using generalized inverses of polynomial matrices

as a tool for solving these problems. Since matrices are

often used to describe the nonlinear problem as well as to

determine optimal solutions, they play a vital role in

optimization theory. The generalized inverses of these

matrices, whether the matrices have polynomial or constant

elements, can provide a powerful solution technique in many

cases.

Optimization theory involves the problem of finding the

extremum pointCs) of some objective function. This function

may or may not be subject to a set of constraining

functions. These constraining functions limit the feasible

region of potential solutions for the objective function.

An optimization study may be concerned with many

different types of problem. The study may be concerned with

the system cost for a new space vehicle launch system, or

the problem of modeling the heat dispersion of air flow over

I



a wing for some fixed-wing aircraft. The study can of course

address other problems in areas such as control theory,

reliability, or functional analysis problems. The point is

there are many examples covering all areas of current

research.

In conducting an optimization study, the analyst must

draw upon knowledge from numerous fields. The mathematical

disciplines often used are matrix and vector theory,

calculus and differential equations, and possibly some

abstract mathematical theory and finite element methods. And

of course in today's complex environment a thorough

knowledge of computers and the computer algorithms employed

to numerically find the "best candidate" solution are

valuable assets.

A working definition of optimization theory can be

stated as, "optimization theory is a body of mathematical

results and numerical methods for finding and identifying

the best candidate from a collection of alternatives without

having to explicitly enumerate and evaluate all possible

alternatives" C38:1). This working definition fits nicely

into the previously described framework for the optimization

study.

A quick look into any text on optimization theory

reinforces the statements Just made. In addition to the

numerous fields of knowledge and research involved, the

optimization text provides an appreciation of the many

aspects of optimization that must be considered, not only in

2



formulating the problem, but also in solving the problem.

As initially stated, the optimization problem may be

constrained or unconstrained. In unconstrained optimization.

the function can take on any defined numerical value. In

such cases, iterative techniques are quite efficient. Some

popular techniques include Golden Section and Fibonacci

algorithms C49:i213 for single-dimensional problems. For

higher-dimensional problems, calculus techniques involving

the gradient function are the usual choice.

Constrained optimization must search for the best

candidate in some predetermined region of the number field.

In order to be a valid candidate for the optimal solution a

set of constraining functions must be satisfied by the

candidate objective function solution. The two dominant

techniques in the linear function arena Ci.e. linear

programming) are the simplex algorithm, first developed by

Dantzig C8:14), and Karmarkar's algorithm C14:75). For

nonlinear functions, there are gradient search techniques,

penalty function techniques, and iterative linear

approximation techniques, to name a few C13:vi). In addition

there is the classical Lagrange multiplier method and the

Kuhn-Tucker optimality conditions that are the basis for

most other techniques in addition to beinq a solution

technique in themselves C38:184-2003.

Regardless of the technique, the theory of matrices is

a key player. Once again, nearly all optimization texts have

an appendix or chapter dedicated .olely to matrix theory.

3



Matrix theory is vital to understanding problem formulation

and then understanding the solution techniques. It is this

matrix theory that is the driving force of this thesis. In

particular, this thesis explores the extensions of that

classical matrix theory to include the generalized inverses

of all matrices.

The first attractive thing about using matrices is the

very compact, easy to follow, problem formulations obtained

using matrices. Systems of equations are very neatly

summarized using matrices. The following example

demonstrates this.

Consider the following system, which is an example from

Chapter IV. Disregard for the moment that the matrix in

C1.33 below contains variable elements Ci.e. it is a

polynomial or multiparameter matrix):

400X - 400XY + 2X = 2 C1.1)

-20OX + ZOOY = 0

This may be written in a much more compact notation as:

ACXY:) ( X ) = BCXY) C1.2)

where

A 400X z+ 2 -400X C1.3)
ACXY) = eo ]

-200X 200

and

BCX.Y) = [.2) C1. 43

Equation C1.2) is easier to understand than equation

C1.1) since it is uncluttered and more compact. The problem

4



solution can then be derived using the same matrix notation.

For example a problem of the form Cl.a2) is easily solved

using the notion of a matrix inverse. Should this inverse,

A- 1, exist, the unique solution is given by:

(X) A-'CX.Y3 BCX,Y3 C1.53

However, not all matrices have this "classical" matrix

inverse. In these cases, the notion of a generalized inverse

is used to solve the optimization problem. More details will

come later, but the generalized inverse does in fact

generalize the idea of a matrix inverse since the 
A-1

inverse matrix, when it exists, is identical to the

Moore-Penrose generalized inverse matrix C45:1383.

The history of the generalized inverse is short. Some

initial work in the 19O's and 1950's was followed by a

flurry of activity in the late 19 0's through the early

1980's. However, this work dealt primarily with constant

coefficient matrices. For most problems in areas such as

statistics, control theory, and even optimization. this

limited applicability was sufficient. The next chapter

surveys a cross section of these application areas. But as

shown in equation C1.3), matrices can contain variable

coefficients. This then is an example from the newest, most

rapidly expanding area of research involving generalized

inverses, that of multiparameter matrices, or matrices that

contain variable elements.

Problnm
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Much of the work done involving generalized inverses is

in the applications of inverses of matrices with constant

coefficients. It has not been until recently that interest

has turned towards working with matrices having variable

elements. The reason for this interest is due to the ever

increasing complexity of modern systems as well as the

ability of modern supercomputer systems to manipulate and

evaluate variable element equations and matrices. Such

expert systems as MACSYMA C50) enable the user to manipulate

purely symbolic equations or matrices. The ability of a

system to handle variable elements is necessary in modern

systems theory involving multiparameters C2O:a53 ; 4:4913,

and large scale network problems C42:5143. to name two

examples.

Thus, work must be done to enable users to solve such

multiparameter systems. This thesis brings together the

theory set forth to date and demonstrates the use of the

generalized inverse of a multiparameter matrix as a tool

applied to selected applications such as control theory and

nonlinear optimization. The ability to use this technique

gives the analyst an often powerful technique for solving

complex problems.

Research Objective

This thesis provides a concise, yet thorough,

compilation of generalized inverse theory. The theory is

then used to solve practical examples from fields such as

optimization and control theory. The theory and examples
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provide the reader with an appreciation of how valuable a

generalized inverse can be in solving a wide range of

pr obl eros.

Approach and Presentation

Chapter II reviews a cross-section of the generalized

inverse field. The purpose of this review is to emphasize

the range of applications and the way in which the

generalized inverse does in fact provide a very general

solution format. It begins with a brief history of the

theory, followed by discussions of various applications.

First among the applications is regression analysis.

followed by nonlinear optimization techniques. Each

discussion explains how the technique is implemented and how

the generalized inverse plays a crucial role. The final

section of this chapter looks at some of the various

computational techniques available. Again the goal is to

explain the techniques, not Just enumerate them.

Chapter III presents a consolidation of the theory and

knowledge at the basis of this thesis work. The intent is to

bring together in one concise chapter, the relevant theorems

presented to date, supplemented by discussions of the

theorems. As a result, this chapter also highlights the

trend in the theory regarding multiparamet.er matrices. For

the most part, the theorems are presented without the proofs

but contain references where the proofs can be found. Each

theorem is discussed to enhance reader understanding of the

generalized inverse theory being presented.

7



Chapter IV applies the theory from Chapter III in

specific application areas. The first topic is the detailed

steps to follow in computing the generalized inverse using

the ST computational technique. This follows directly from

the theory laid out in the previous chapter. The first three

applications presented involve unconstrained optimization.

implicit function theory, and constrained optimization,

respectively. The chapter concludes with a robust control

theory problem and an example that employs the theory

regarding common solutions to sets of matrix equations.

Finally, in Chapter V, the thesis is summarized and the

important points are reiterated. The final point made is

recommendations for future areas of research regarding

multi parameter matrices.

8



I I. LI TERATURE REVI EW

I ntroducti on

The purpose of this chapter is to examine the current

knowledge in the area of generalized inverses of matrices.

This concise summary focuses on the theory and applications

of generalized inverses, and is divided into three main

sections.

The first section briefly discusses the history of the

generalized inverse. Some specific application areas follow

in section two. The areas discussed represent a small cross-

section of the application areas. The emphasis is on the

diversity of the field, while providing an understanding of

just how the particular technique under examination applies.

and exploits, the generalized inverse matrix. The final

section addresses techniques developed to compute the

various classes of generalized inverses.

History.

Given any square matrix. A, if the determinant of A is

non-zero C i.e., DetCA) 9 ) then there exists a matrix. A -%

that satisfies the property

A-'A = A A- '= I C2.I)

where I is the identity matrix. The matrix A -1 is called the

inverse of A and A is said to be invertible or nonsingular.

However, if A is non-square, or is square with a zero

determinant Ci.e.. DetCA) - 0). then there is no matrix B

such that

9



A B = B A = I Ca.2D

and A is said to be a singular matrix. In cases where the

matrix A is singular, inverses from a larger class of matrix

inverses must be computed. This is the class of generalized

inverses, of which A- 1 is a unique element when it does in

fact exist.

In his 1985 AFIT thesis, Murray C27:1-3) classified the

history of generalized inverses by identifying five key

developments. The first occurred in 1903 when Fredholm

introduced the concept of the generalized inverse, calling

the inverse matrix a pseudoinverse. In 1920, Moore proved

algebraically the concept of a unique generalized inverse

for every finite matrix. He called his matrix a general

reciprocal matrix. It wasn't until 1951, in work done by

Bjerhammer, that the relationship of this generalized

inverse was extended to a system of linear equations.

Using Bjerhammer's results, yet apparently unaware of

Moore's earlier work, Penrose showed that this

generalization of the -classical" matrix inverse was unique

for every matrix. Penrose defined four conditions that this

inverse must meet. These Penrose conditions C32: 4083 are

used as a basis for classifying all the generalized inverses

of a matrix. The conditions, along with Penrose's original

theorem, are presented and discussed in depth in Chapter

III. For now, the conditions are presented without proof for

discussion purposes. The four conditions that Penrose

identified are:

10



C13 A A* A = A C2.3)

C2) A* A A* = A*

C3) CA A*) = A A

C4) CA" A) = A+ A

where denotes the conjugate transpose of the matrix.

The matrix that satisfies these four equations, denoted

as A%, is referred to as the Moore-Penrose generalized

inverse in recognition of contributions from both

researchers. Later work involved matrices that satisfy some,

but not necessarily all, of the Penrose equations. For

example, a matrix B that satisfies condition C1) may not be

unique, but is sufficient for use in solving sets of linear

equations C28:127). A matrix that satisfies conditions Ci)

and C2) is often referred to as a weak-generalized inverse.

WGI, or the A generalized inverse.1,2

Murray identifies the fifth, and final major

development, to be the Jones ST method of computing all the

generalized inverses of a matrix C27:3). Since the ST method

is the particular technique used in this thesis, a more

in-depth discussion of the technique is provided in Chapter

III.

Apl i cati ons.

In 19W Penrose showed that the unique A+ generalized

inverse, when used to solve an equation of the form:

A = C2.4)

provided the least-squares, minimum-norm solution vector x.

However, there are other classes of generalized inverses for

a matrix that satisfy only a portion of the four Penrose

Ii



equations. Since only the A+ is unique for any matrix A.

other inverses are members of subsets of inverses. For

instance, an A matrix is not unique for a given matrix A.1.2

but just one member of the subset of A matrix inverses.1,2

Some ideas from set theory C47:215) show this subset

relationship:

A+ G C A .A ) S C A ) G C A ,A) C2.5)
1,2,9 1,2,4 1.2 1 2

This set relationship is shown pictorially in Figure 1

C27: 5).

After Penrose's original work, much was done in

identifying the properties of these subsets of inverses. As

Penrose proved, the A + matrix provides the least-squares,

minimum-norm solution to an equation of the form C2.4).

However, a lesser inverse, the A,, generates the

least-squares estimator. Similarly, the A inverse1,4

generates the minimum-norm solution C28:129-1323. As

expected, these generalized inverses come up quite often in

statistical applications, as the next section illustrates.

Statistical Applications. A regression analysis model

is of the form:

= Xb + C C2.5)

where Y is the vector of dependent variables, X is the

matrix of independent variables, and c represents a random

error component with zero mean and known covariance matrix,

V. The vector b of regression parameters describes a linear

relationship between the independent variables and the

dependent variables. In reality, the values of b are unknown

12



and must be estimated from the data. A key question is how

to select the best estimators of b.

A/\
A A

1 2

A
/\

A A
1,12, 1,2,4

\,//
A

1,2,3.4

FKXRE I- SETS OF GENERAL I ZED INVERSES

These estimators are generally denoted as b Cor t? in

some texts). Desirable properties for the vector of

estimators, b, are minimum variance and that it be an

unbiased estimator of the true parameters, b. If it

satisfies these properties it is called a best linear

estimator CBLE3. Nelson C30:1-183 examined the use of

generalized inverses in regression analysis, both in

unconstrained and constrained regression analysis. In both

cases. the BLE for the problem was found in terms of the

oore-Penrose generalized inverse.

13



The first case discussed is that of the unconstrained

case C30:23. In this instance the BLE of C2.5:) is given by:

b= CXT V - X) X V C2.7)

and the covariance of b is defined as:

T -I
covC:b:) = CX V X) C2.8)

Nelson considered equality constraints C30:2-7) on b of

the form:

A b = t C2.9)

Cinequality A b 5 t )

In this case, his best restricted linear estimator CBRLE)

was defined as:

b = At + C X V-1 Cy - X A t:) C2.o:)

C = CI - A A3 XT V- 1 X CI - A+ A)

and

covCb) = C C2.11)

Nelson's methodology is more involved when the problem

involves inequality constraints C30:7-10) of the form in

C2.9). He first determines whether the unconstrained optimum

is feasible, with respect to the constraints. If not, then

he uses the fact that the optimum must lie on a constraint

boundary. This implies that a certain subset of constraints

intersect to form the constraint boundary where the optimal

point resides. Since the points lies on the boundary, the

constraints must be satisfied as equality constraints.

Using this. Nelson essentially conducts a tree search

of each basis or subset of constraints satisfied as

equalities Cother constraints must still be satisfied). In

14



this manner, the optimum solution is found in a finite

number of steps. However, this procedure is combinatorially

inefficient for problems involving larger constraint sets.

Stewart C45:534-152) did work somewhat similar to

Nelson. His work differed in that he was primarily

interested in how perturbations in A, due to uncertainty

about A, effect the generalized inverse A, the minimum-norm

solution, A b, and the least-squares problem.

Another area is the study of Markov chains, either

discrete or continuous, examined by Hunter in 1982. In his

work. Hunter C15) characterized all the generalized inverses

of the matrix CI-P). For discrete Markov chains. P is the

one-step transition matrix. In the continuous case, P is the

infinitesimal generator. Hunter found the necessary

stationary and first passage time distributions for the

problem in terms of these generalized inverses. In proving

his results, Hunter refuted previous work claiming

generalized inverses were not applicable to the study of

arkov chains C18:198-197).

The generalized inverse arises in many other

statistical settings involving singular matrices. For

example, Rao C38:201-803), Albert C28:25), and Henk Dan

C12: 225-240) examined Maximum Likelihood Estimation

involving singular information matrices. Rao and Yanai C37)

looked at the Gauss-Markov model and in particular the

models involving generalized inverses of partitioned

matrices. Hsuan C153 examined some specific uses of the A

1
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generalized inverse matrix. Among the areas he examined were

the least-squares problem and the conditions under which the

quadratic form of a multivariate normal random variable will

follow a chi-square distribution C15:245-2473. A classic

text by Rao and Mitra provides chapters dedicated to just

statistical applications of the generalized inverse matrix

C36: 136-1 683.

Nonlinear Optimization. As previously discussed in

Chapter I. matrices play a key role in optimization studies.

This section looks at some optimization techniques involving

the generalized inverse.

A quadratic programming problem is a particular type of

nonlinear programming problem CNLP) involving a quadratic,

convex, objective function, subject to a set of linear

constraints C49:14). Nelson C29:1-21) discusses a quadratic

programming problem of the form:

max fCx.) C2.12)

S. t. giCx) < 0 for i=l.... I

For any f -asible solution to the problem, only a

portion of the I linear constraints are binding. For any

feasible solution. x. a constraint can be binding or

non-binding. If the furctional value at x lies on the

boundary of the feasible region defined by a constraint,

then that constraint is a binding constraint. If the

functional value is not on the feasible region boundary

defined by the constraint then the constraint is considered

a non-binding constraint. Nelson examines possible

16



combinations of constraints as if that combination of

constraints were binding Ctreated as strict equality

constraints) and determines the optimal solution given the

particular combination of constraints. If the resulting

solution satisfies all the constraints the solution is a

potential optimal solution. Once all possible combinations

of binding constraint sets are examined, the best potential

solution obtained is the optimal solution C29:19-20).

Nelson uses the generalized inverse to handle the

non-square, singular, matrices that result from partitioning

the constraint set. Thus, a more general technique is

obtained than if the classical A-1 inverse were used. Since

this is the same technique Nelson employs for inequality

constrained least-squares problems, the technique suffers

from the same combinatorial inefficiencies as before. For

large problems involving many constraints, this technique

would be very cumbersome and impractical.

Shankland avoided the combinatorial complexity of

Nelson's algorithm in his quadratic programming technique.

The formulation he used was C40:.):

max S = a Tx - I/ x TB x C2.13)

s.t. Cx-d 5 0

where B is a positive definite, symmetric matrix.

Shankland first decomposes B into the product of a

lower triangular matrix, L, and it's transpose, L , and

performs the three following transformations on the

formulation of C2.13):

17



B = L L T  C2.14)
x' L LTx

a= L-t a and C' =L - C

Shankland's final transformation shifts the origin to

the unconstrained maxima of C2.13), a point he calls a'.

Using the transformations:

xt" x" - a. C P_ 15:)

d' d - CT a'

produces the final formulation C40:3):

max S = 1,2 C a T - X'' T X'') Ca.1e)

s.t. C'Tx, " - d' < 0

If the feasible region defined for C2.15) contains the

origin Ci.e.., shifted origin), then the origin is the

solution. If not, then the point on the surface of the

feasible region closest to the new origin is the solution

point for the problem. The task is to find this point

closest to the origin.

* Although, the origin, x = 0. is not a feasible point,-o

Shankland treats it as such for the moment. Using x , a

subset of constraints. V, is formed from the violated

constraints. This subset of constraints is solved as

equality constraints. If the feasible region defined by V is

non-empty. a Lagrange multiplier technique yields the

solution point. If the feasible region defined by V is

empty, a generalized inverse obtains a solution in terms of

least-squares. Th. least-squares function, C@v) ev, arises

from:

1



CT - d e 0 0 C2.17)

not equal to zero since the region is inconsistent in terms

of the intersection of the constraints.

This least-squares solution might be improved using an

iterative refining technique C40:5-7). In this refining

process. violated constraints are retained, over-satisfied

constraints are removed, and a feasible solution obtained

for the resulting constraint subset. If the solution

violates some other constraintCs), the process is repeated.

If the refining process finds no feasible solution, the

initial least-squares solution is retained as the best

solution to the problem. The primary feature of using a

generalized inverse is that the least-squares solution is

obtained even when a unique solution is not available due to

inconsistency in the constraint set. When this inconsistency

occurs, Shankland states that, "the constraints are mutually

incompatible" C40: 7).

A penalty function technique is an optimization

technique that transforms a constrained optimization problem

into an unconstrained optimization problem. The basic

concept is to force convergence to the optimal solution by

applying increasing penalties for not satisfying the

constraints imbedded in the unconstrained function. Thus,

there is a trade off between satisfying the constraints and

minimizing the objective function C13:299-300).

Fletcher C28:23-224) uses the generalized inverse to

generate a penalty function from the original constrained
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problem. Fletcher's technique employs the gradient of both

the objective function CVfCx3 = F3 and the constraints

CVg Cx) = N), as well as the Hessian matrix of the objective

function CHCx)). Then to ensure proper behavior of the

function, a large positive definite matrix. Q. is added to

the function giving an unconstrained function:

0 = F - NN F + g TQg C2.18)

This unconstrained function can now be solved using any

appropriate unconstrained optimization technique. Fletcher

points out that this function:

Ca:) is suitable for a variety of problems,

Cb:) is well conditioned, and

Cc:) strongly interfaces to the classical Lagrange

method of multipliers, as well as other penalty

function techniques.

In a 195 article. Charnes and Kirby used the

generalized inverse, in particular the A inverse, to showI

"that the modular design problem is simply a special case of

a large class of engineering design problems" presented

elsewhere in the literature CO:8433. This special case

problem is the separable convex function subject to linear

equality constraints. A separable, convex function can be

approximated by a series of linear functions Ci.e.. linear

approximation). Such approximations enable the use of the

more efficient linear programming packages to solve the

problems. The algorithms specifically designed for the

modular design problem are often complex and inefficient so

20



the increased efficiency gained from the approximations

offset the effort required to reformulate the problem.

The modular design problem presented by Charnes and

Kirby is of the following form C5: 835):

mi nX e E ~n d D. ca. 19)

s.t. E.D. ? R.. C i = 1.... ,m)
L J .j

L .

where e , d , and R.. are positive constants. Charnes and
L J

Kirby make the statement that the algorithm typically used

to solve these types of problems is very slow in converging

to the optimum C5:837).

Charnes and Kirby use a series of transformations to

produce an equivalent formulation of C2. 19) whose properties

of convexity and separability enable use of the linear

programming packages. The key transformation involves the

generalized inverse which is coupled with the concept of

slack variables from linear programming. A key aspect of

linear programming involving linear inequality constraints

is that slack variables, w. enable the following

transformation:

A x 2_ b * A x = b + w Ca.0)

From the generalized inverse theory, a consistency

condition for the equation A x = b to have a solution is

that A A b = b C8:838). This concept can be combined with

C2.2O) above to produce the following equivalence

relationship:
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opt FC x-) opt FC x) ca. 213

s.t. A x? _b s.t. Ax = b +

A A Cb + cw) = Cb + w)

>~ 0

Working from the modular design formulation C2.19), the

following three transformations are applied to the initial

problem formulation:

C) y e E.

z. = dD.
J J J

r. =e dR
L 1. I 3

C 2) yt = eUL

z eV

c. InCr..)
U 1.3

after which the equivalence relation of C2.21) is used as a

third transformation.

These transformations change the problem formulation

according to the sequence in Figures 2.a through 2.d.

Although the Figure 2.d formulation may be solved for the w

values, the formulation is extended to the final form,

Figure 2.e, using the transformations:

T = CI - A A+) C2.22)

AACb + w:) = b + w . C I - A A')w = -CI-AA+)b

The final form of the modular design problem, given in

Figure 2.e, is the desired separable convex function subject

to linear equality constraints. Though use of the

appropriate transformations, Charnes and Kirby demonstrate

the similarity between the modular design problem and linear

programming problems making particular use of the
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generalized inverse matrix.

Common Solutions. The last application area isn't so

much an application as it is a demonstration of the trend

regarding applications of generalized inverses. This trend

is the move from matrices with constant coefficients to

matrices involving polynomial elements. These matrices with

polynomial elements are called multiparameter matrices. An

understanding of this trend demonstrates future applications

of, and research into, generalized matrix inverses.

In Penrose's original work, he presented necessary and

sufficient conditions for solutions to exist to a problem or

set of equations C32:4093. In 1972, itra discussed the

simultaneous solution of two matrix equations C243, unaware

that a more generalized discussion was presented by Morris

and Odell in 1968 (26). In their earlier article. Morris and

Odell proved conditions for a common solution to n matrix

equations. Also in 1972. Shurbet C41) defined the necessary

and sufficient conditions for the consistency of a system of

linear matrix equations. This work built on the work of

Morris and Odell and advanced the theory for the constant

coefficient matrices.

With developments in multiparameter, multidimensional

systems, there arose the need to do similar work with the

generalized inverses of polynomial matrices. The first

attempt to study these multiparameter matrices was in 1978

by Bose and tMitra C4:49). Their article provided necessary

and sufficient conditions regarding the algebraic structure
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of the multiparameter matrix. In an extension of the work of

Bose and litra, Sontag gave a complete characterization of

the weak-generalized inverse CA ) for matrices involving1.2

several polynomial elements C42).

Later work by Jones in 1983 C18) and 1985 C20) extended

the theory, providing necessary and sufficient conditions

for the solution of several types of matrix equations.

Jones' work examined much of the work already done for

constant coefficient matrices and extended the theory to the

case of multiparameter matrices. Finally, to complete the

cycle of research, Jones extended the work of Morris and

Odell regarding common solutions to sets of matrix equations

to the area of multiparameter matrices C17). In his work,

Jones provided the necessary and sufficient conditions for

the existence of common solutions of n multiparameter matrix

equations.

Computati on

The last topic in this section concerns methods for

computing the generalized inverse. As previously stated,

Murray cites Jones' ST method for computing all generalized

inverses as the last significant contribution to the theory.

The purpose of this section is to present some of the other

computation techniques. The ST method is presented in detail

in the next chapter.

Penrose's Method C30:208-209). The essence of this

technique relies on the ability to partition a matrix A,

having rank of r, into the fellowing form:
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A A ( A A 2 )23

A A

where A is of dimensions rxr. A = A IA-A 2 and A and A

are of suitable order such that the matrix A remains an mxn

dimensional matrix. From this partition, define P as:

P = CA A T + AAT)A C AA + ATA)- C2.24)
11 22 1 1 1 39

and then [ A PA T A TPA C 2.25
A1

AT PT ATPAT]
2 1 a 3

Though straightforward, this method relies upon

knowledge of the rank of the matrix A and the computation of

classical matrix inverses.

OS Decomposition. This method depends upon decomposing

the matrix A into the product of two matrices, Q and S so

that:

A QS C2.2)

where Q has orthogonal columns and S is an upper triangular

matrix C28:2853. This decomposition is then used to obtain:

A+ =S e CS S)' Q C2.273

The recommended numerical technique for accomplishing

the computations in C2.27) is to solve:

C S ST) X =Cz. a83

and form the product:

A = ST X C2. 29
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which gives the desired A* generalized inverse C28:285).

A somewhat related technique uses a different

decomposition, namely:

A = L U C2.30)

where L and U are lower and upper diagonal matrices.

respectively. Though this decomposition technique is

numerically cheaper to perform than the decomposition of

C2. 53, computing the A4 from the L and U matrices of C2.30)

involves more operations than using operations C2.27)

through C2.a9). Dtails can be found comparing each

technique in an article by Noble in Nashed's volume on

Generalized Inverses C28:285-288). Numerical techniques for

each decomposition fall under the headings of OR

decomposition C31:315-3a3) for C2.25) and LU factorization

for C2.30) C5:342-350).

Direct Computation. Given an mxk matrix A. of known

rank r, the most straightforward technique for computing A+

is by the following formula:

4 C i 'A C2. 313A = CATA) - A C.1

which is the familiar least-squares solution of linear

equations and linear regression. The actual computation of

C2. 31) can be accomplished by numerically solving the

following for the matrix X C-8:-78):

CA'A) X = A7 C 2.38)

The problem with C2.31) and C2.33) arises when the

matrix A contains linearly dependent rows Cor columns). This
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causes a singular matrix CA A). which causes C.31) to fail.

and worsens the numerical computation of C2.32) C28: 279).

For example, compute A, using equation C2.31:. for the

matrix A defined as:

A = I ) C2.33)

The product T is the following:

AT A (3 3 C2. 34)

which is singular implying CATA) - doesn't exist. The

previously discussed decomposition methods improve the

conditions for computing the generalized inverse. Thus the

decomposition methods are recommended over this particular

direct method C28: 284:).

Recent advances in computer algebra enable researchers

to expand into symbolic computations. Computer-based expert

systems such as REDUCE. MAPLE, SMP, muMATH, and in

particular MACSYMA C50: 3) provide such symbolic

computational environments. Sample manipulations are limits

and integrals. Frawley C11:4193 uses a limit form of C2.31)

to compute generalized invernes in MACSYMA. The form used

is:

A+ = lim CC A7A + X'I3) -A7) C2. 35)
X400

Sinaular Value Decomposition. The singular value

decomposition method C31: 323-330.) is somewhat more
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complicated. The method makes use of the eigenvalues and

eigenvectors of a matrix. A key idea is that a matrix of

orthonormal eigenvectors of a matrix A can be used to

decompose A into a diagonal form where the diagonal elements

are the eigenvalues of A. If M is this matrix of

eigenvectors, this decomposition is given in the following

equation:

MAMe (i2.35)

where Z is the diagonal matrix of eigenvalues.

The technique for finding A* (31:328) involves the

orthonormal eigenvectors of the matrices AAT and TA, as

well as their eigenvalues. which are equal. The matrix V

contains the eigenvectors of A TA and the matrix U contains

the eigenvectors of AA . A diagonal matrix, Z. is defined as

before in C2.35). The equation for A is then C31:337):

A = V X U C2.37)

Although very straight forward computationally, the

problem with the method involves finding the eigenvalues and

eigenvectors of the matrices. Numerical computations to find

the eigenvalues, and the corresponding eigenvectors, of a

matrix can introduce error into the computations as well as

require significant computer resources.

Other Techniaues. As previously mentioned, the A+

matrix is actually a unique member of a class of generalized

inverses. Further, mention was made of the fact that a

lesser inverse, such as the AI or A 2 inverse may suffice
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in some applications. Thus, there are techniques for

computing these subsets of matrices.

One technique to compute the A , or the A matrix is1 2

similar to Penrose's technique C31:208). To compute the A.I

partition the matrix A such that A = C B, I B2 ). where the

dimensions of the submatrix B are determined by the rank of

A. and the dimensions of B are appropriate for the matrix.2

Using these submatrices, the generalized inverse. A , is

computed as:

At C BTB :-IBT ) C2.38)

The A generalized inverse can be computed in a similar2

fashion. The matrix A is partitioned ,o that

A [C C2.39)

Cz

where as before the dimensions of the matrix C is determined

by the rank of the matrix A. The dimensions of C are again2

appropriate for the matrix. The formula for the A

generalized inverse is:

A ( CCTC -ICT 0) C2.40)

The observant reader will note the similarity of the

previous formulas with equation C2. 31) and the least-squares

estimator. For full-rank matrices, this technique is a

special case of the direct computation method. The drawback

with the technique is the need to predetermine the rank of
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the matrix A. There is also the need to permute the matrix A

to obtain the proper partitioning.

One final technique is worth noting. This technique.

due to Urquhart C473. starts with any technique to compute

the A matrix. Using this technique, the following matrices1

are computed for the matrix A:

B =CAAT) C CATAD C2.41D

These additional matrices, the original matrix A. along

with AT . are then used to obtain representatives from each

set of generalized inverses. The following formulas compute

these generalized inverses:

A =A AA C2.42)
1,2 1 1

A ATB C2.433
1,2,3 1

A =C AT C2.443
1,Z,4 1

A = A+ =ATB AC AT C2.453
iZ.,4 1 1

Each of the techniques discussed make explicit use of

the predetermined rank of A and use some form of matrix

decomposition. Iterative methods, that converge to the

Moore-Penrose generalized inverse CA ), were not addressed

in this review. Since an iterative method converges to A%

ideally A+ must be known to say with certainty that AO * A,

where AO is defined as the intermediate values of the

inverse.

Standard computer software packages, such as IMSL,

EISPACK, and LINPACK contain routines for the generalized
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inverse C28:2983, but none of these use Gauss-Elimination as

the basis of the computations. These routines also cannot

handle matrices with polynomial elements, but then were not

really designed to do so. The technique used in this thesis,

Jones' ST method, uses Gauss-Elimination, determines the

rank of the matrix A. generates all generalized inverses of

A, and is very applicable to multiparameter matrices. The

algorithm is easy to understand and is numerically and

computationally efficient C27:873. The theory behind the

technique as well as a description of the algorithm are

discussed at length in the next chapter.

Conclusion

This chapter examined the published knowledge regarding

the theory, application, and computation of generalized

inverses. The applications section highlighted the diversity

I. of the field in applying generalized inverses. The

minimum-norm, least-squares property of A* make the inverse

valuable in statistics as well as in optimization theory. A

big benefit is that. since a generalized inverse exists for

all matrices, mathematical problem formulation is not

limited to just using square, non-singular, matrices.
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III. Theory and Background

Introduction

As chapter two highlighted, the theory of generalized

inverses has touched a wide range of disciplines. This

chapter presents the theoretical groundwork of this thesis

effort, generalized inverses of multiparameter matrices.

This is a new area of research, sparked by the growing

complexity of modern systems. Theory regarding constant

coefficient matrices falls short in solving current

problems. Computationally, expert systems such as MACSYMA

enable efficient manipulation of variable element matrices

and provide exact answers to complex problems. Thus, with

theory and computational tools available, the application of

multiparameter generalized inverses can progress.

The theory presented here has emerged from the constant

coefficient matrix theory. Most of the theorems have been

proved elsewhere, so the source of the proof is provided as

a reference. The purpose of this chapter is to provide an

understanding of the theory behind generalized inverses.

This insight comes from the contents of the theorem, not

necessarily from the proof of that theorem. The intent then

is to consolidate that theory at the very core of this

research effort.

Constant Coefficient Matrices

The basic conditions a matrix must satisfy for the

matrix to be a generalized inverse were set forth by Penrose
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in 1954. Penrose's purpose in considering these inverses was

to solve inconsistent linear equations, those involving

singular and rectangular matrices, cases where classical

matrix theory fell short. These conditions, now referred to

as the Penrose conditions, come from the following theorem:

Theorem 3.1: C32: 406) The four equations:

CI) A X A = A C3.13

C2) X A X X C3.2)

C3) CA X) = A X C3.3)

C4) CX A) = X A C3. 4)

have a unique solution for any matrix A.

Proof: See cited reference. Numbering of the equations

added for future reference.

In the course of his proof. Penrose showed that the

matrix A did not necessarily have to be a square matrix.

Since the classical inverse from matrix theory covers only

non-singular, square matrices, Penrose said his inverse was

a generalization of the notion of a matrix inverse. He

called his inverse a pseudoinverse and designated it as A".

Along with the proof, Penrose provided two key lemmas. These

are:
+

Lemma 11: A = A

L If A is a non-singular matrix, then A =

A- C 32: 4083.

With Lemma I.B, Penrose tied together the notion of a

generalized inverse with the classical inverse theory he

sought to generalize. Thus, working with the A+ inverse did
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in fact provide for a more general methodology than using

just the A-= inverse.

The next theorem, and it's associated corollaries, gave

Penrose the ability to solve all types of linear equations,

both consistent and inconsistent.

Theorem 3.2. C32:40W) A necessary and sufficient

condition for the equation

A X B = C C3.5)

to have a solution is

A A+ C B B = C C3. 5)

in which case the general solution is

X = A* C B + Y - A+ A Y B B C3.7)

where Y is arbitrary.

Proof: See cited reference.

Corollary 3.2.1. The general solution of the vector

equation:

PX =C C3.8)

is

x= P + C + C I - P+ P3 Y C3. 9)

where Y is arbitrary, provided that the equation has a

solution.

Corollary 3.2.2. A necessary and sufficient condition

for the equations:

A X = C C3.10)

XB = D

to have a common solution is that each equation should

individually have a solution and that
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A D = C B C3.113

Proof: See cited reference.

These then are the pertinent results from the classical

work of Penrose. Each forms the basis for future work, as

shown throughout the remainder of this chapter. It should be

noted that soon after the publication of Penrose's work, it

became evident that the four Penrose conditions were

equivalent to earlier work done by Moore. In his earlier

work. Moore defined the generalized inverse. G, of a matrix

A as satisfying:

AG = P C3.12:a

GA = P
a

where P is defined as the orthogonal projection onto thex

column space of the matrix X = G or A C28:xi-xii). Thus, the

A+ inverse is generally referred to as the Moore-Penrose

generalized inverse C28:1113.

The work of Penrose laid the groundwork for later

advances in generalized inverse theory. However. to properly

understand some of the later work, particularly the work of

Jones and others with the ST computational method, as well

as the connection between the early work of Moore and

Penrose, one must first understand some fundamental ideas

from linear algebra. In particular there is Strang's

discussion of the four fundamental subspaces associated with

a matrix and extensions of this work into the multiparameter

matrix area. Strang develops these concepts in the form of

two theorems, which he labels as Fundamental Theorems of
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Linear Algebra. From Strang C45:75:):

Fundamental Theorem of Linear Algebra, Parts I and II

I. RCAT) row space of matrix A; dimension r

2. Y)CA) = nullspace of matrix A; dimension n-r

3. RCA:) = column space of matrix A; dimension r

4. YyCA T ) = left nullspace of matrix A; dimension m-r

5. YrCAD = CIRCA'T )) "  15. (RCA7) =TCA: "L

7. 77CA) = CIRCA)) 8. (RCA: CiqCAT:))

The above theorem says that associated with any matrix

A there are four fundamental subspaces, and these subspaces

are related according to the orthogonal complement

relationships depicted in 5 through 8. Although Strang aimed

his theorem at matrices with constant coefficients, the

results are just as valid for matrices defined over the

polynomial field.

For the equation Ax = b. the idea of subspaces is

critical. For a solution to exist, the vector b must lie

within the column space of A. In other words, x is a linear

combination of A. Those linear combinations of x that

satisfy the homogeneous equation Ax = 0 are members of the

nullspace of the matrix A. This nullspace is also referred

to as the nullity or the kernel of the linear transformation

provided by the matrix A C1:218).

The idea of rank of a matrix must also be understood.

The rank of A is the number of linearly independent vectors

that span the column Cand row) space of the matrix. A more

traditional definition is that the rank of the matrix A is
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the dimension of the smallest nonsingular submatrix of A. If

A is nxn, and the rank, r, equals n, then A has full rank.

If A is mxn and m0n, then A is not full rank. Only full rank

matrices have a classical inverse. A , and provide a unique

solution vector, x, to the equation. Ax = b.

For full rank matrices, the homogeneous equation Ax=O

is satisfied only by the trivial solution, x=O. The

nullspace consists of this single point. In singular

matrices, the nullspace is of dimension n-r, or m-r,

depending upon the rank of the matrix. The solutions of Ax=O

are non-trivial and form a non-trivial subspace, the

nullspace, that is orthogonal to the column space, which is

of dimension r. the rank of A.

Looking at Ax=b, a solution, x, can be found if b is

orthogonal to the nullspace and is a member of the column

space. But if the equation is inconsistent then the A
-1

inverse does not exist and the solution is no longer unique.

The best solution to the problem must then be selected

from among the possibly infinite number of solutions. This

turns out to be the point, call it t, that is in the column

space of A and is closest to the point b. This solution

is deemed "best" since it is the closest solution among all

possible solutions. Typically least-squares or minimum-norm

criteria are used to determine the closest solution.

This is where the generalized inverse comes into play,

as alluded to in Chapter II by Penrose's observation that A+

provides the least-squares, minimum-norm solution. The A+ is
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a projection of b onto the column space of A. In terms of

least-squares, x = CA A) -Ab, is the projection of b onto

the x in the column space. This projection is accomplished

by the CATA -iA term, which as shown in Chapter II, can

sometimes be used to find the A+ inverse. Thus, the

reasoning behind the claim that A+ provides the minimum-norm

or least-squares Cclosest) solution to the inconsistent

problem.

Since the row space and nullspace are orthogonal

complements, any solution vector consists of two portions.

One portion is a projection onto the row space, the other is

the projection onto the nullspace. This solution vector can

thus be written as x = Cx + w). Here x is the row space

component and w is the nullspace component. Strang C45:138)

points out that any solutions to Ax=b will share a common x

and differ only in the nullspace component, which is the

solution to the homogeneous equation Ax=O. This homogeneous

portion can also be expressed in a general form as x = CI -

A*A)z, for arbitrary z C35:a3-25 ; 34:35).

Taking these ideas into account, Strang states the

following conclusion, which is found embodied in the results

of Corollary 3.2.1 C46:138):

The general solution is the sum of one particular

solution Cmn this case x) and an arbitrary
-r

solution z of the homogeneous equation

Mul tiparameter atrices

The first. attempt to study generalized inverses of
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multiparameter matrices, was by Bose and Mitra C4: 491).

Their motivation for delving into this new area was the

study of multi-input/ multi-output control systems. These

systems often require the use of matrices having elements

that are not constant, but variable. Thus, Bose and Mitra

sought to extend the extensive work already done for

constant matrices into the multiparameter matrices defined

over rings of polynomials of a single variable C42:514).

Theorem 3.3. C4:491) Any Cm x n) integer matrix

having rank r will have an integer matrix for its

generalized inverse if and only if A can be expressed in the

Smith canonical form Csee Appendix A for a definition of

Smith form:):

A = M D N C3.13)

where M and N are integer matrices with determinant equal ±1

and D is of the form:

D = 0 I 0 C3.14)
0 0

I , being the identity matrix of order r.

Proof: See cited reference.

Bose and Mitra use this theorem to extend the notions

to multiparameter matrices with the following theorem:

Theorem 3.4. C4:492:) Any Cm x n) polynomial matrix

ACz). of rank r with coefficients in a number field, will

have a polynomial matrix Cwith coefficients in the same

field3 for its generali7.ed inverse if and only if ACz3 can

be expressed in the Smith canonical form
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ACz) MCz) D NCz) C3.15)

where MCz) and NCz) are polynomial matrices with determinant

equal ±1 and D is of the form:

D = D 0) C3.15)

D being an Cr x r) diagonal matrix of constants belonging

to the chosen number field.

Proof: See cited reference.

Bose and itra use reduction to Smith normal form to

characterize the "weak generalized inverse", which are those

inverses satisfying Penrose conditions CI) and C2). They

also addressed just the single variable, polynomial matrix

case. Extended results were obtained by Sontag in June 1980

with the following theorem:

Theorem 3.5. C42:514) The following statements are

equivalent for a matrix A = ACzI z ..... z over R e

CCz .z 2 . . ,z ):t 2 n

a) A has a weak generalized inverse CWGI)

b) There exist square, unimodular Ci.e. nonzero

scalar determinant) matrices P and Q defined

over R such that A = P A Qwith
a

A (IX O C3.17)
0 0

where I is the identity matrix of order r =
F

rankC A)

c) As a function of the complex variables
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CzIz. 2 • z ), the rank of ACz Iz ,... z ) is

constant.

Proof: See cited reference.

Theorem 3.5 C42:516) The following statements are

equivalent for any matrix A over CR

a) A has a generalized inverse

b) A has a weak generalized inverse

c) A has constant rank over all Cz ,z. ... z ) in ER

d) A can be written as P A Q with P and Qa

unimodular CR matrices Cmeaning having

determinant not equal zero for all

Cz ,z ... z ) in IR and

A = (i 1, ) C 3. 183
0 0

with I being the identity matrix of order r =
r

rankCA)

Proof: See cited reference.

Sontag made two significant advances. First, the

results were now extended to matrices defined over IR
n

Secondly, he showed a generalized inverse in fact forces the

existence of a Smith form for the original matrix. Recall

the work of Bose and Mitra where the Smith form implied

existence of the generalized inverse. The question Sontag

faced was how to determine the P and Q matrices that perform

the necessary transformations.

Sontaa' s Factorization

Sontag used a full-rank factorization of the matrix A
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C42:5153 to derive a formula for A+ . Recall a factorization

of A requires two matrices, B and C, such that A = B CT

for B a C", C C C,, r and rankCA) = r C36:5). But clearly B

and C function in the same role as do the P and Q matrices

referenced by Sontag. There is still the need to determine P

and Q. Another method C31: 32)53 namely the singular valued

decomposition, employed the matrix M of eigenvectors of A AT

and AT A. The Moore-Penrose inverse, A, is then computed by

the formula:

A+ = M X- 1 M- 1 C 3. 193

where Z-1 is the inverse of the matrix X whose diagonal

elements are the eigenvalues of A A . or AT A. The

eigenvalues of A AT and AT A are equivalent.

ST Method

The easiest method of computation involves use of the

ST canonical form, along with extensions of work from Sontag

and classical linear algebra, to determine the P and Q

matrices while reducing the A matrix to it's Smith form.

This method is the ST method of Jones C7:3-4 ; 27: vi).

Extensive detail of how the ST method is implemented can be

found in a recent AFIT thesis by Murray. Although Murray

considered only the constant coefficient case, the technique

remains the same for reducing multiparameter matrices. A

brief explanation of the technique is followed by the

underlying theorems.

Consider A a C " . Augment A with identity matrices

below and to the right to obtain the following form:
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FA I C 3. 203
1 0J

where I C , and I e Cmx . This is referred to as the

initial ST canonical form.

Reduce the A matrix to the identity matrix. I r where

the dimensions of the identity matrix, rxr, are equal to the

rank of the original A matrix. Any row operations performed

in the reduction are carried out on the augmented matrix to

the left. Similarly, any column operations are carried out

on the augmented matrix directly below the original matrix.

Once the A matrix has been reduced to it's identity form,

the augmented form is now in the final ST canonical form:

S O T C3.21)

All that is required to accomplish this initial

reduction are elementary transformations, commonly known as

elementary row and column operations. Whether the matrices

involved are constant coefficient or multiparameter

matrices, the elementary transformations remain the same.

Appendix A contains the definition of these operations.

If A is full row rank, the M submatrix will not exist.

If A is full column rank, the N submatrix will not exist. If

A is both full row and column rank, then A has a A- i and a

trivial nullspace, the point zero. In this case, neither the

M nor the N submatrices will exist in the final ST canonical
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form. The rank of A, rankCA) = r, is determined as a result

of the elementary transformations used to reduce the

augmented form C3.203 to the reduced canonical form C3.213.

From the form of C3.21D, the P and Q matrices required

by Sontag can be read off directly. These matrices are:

P= K-Mi) Q = ( S I N ) C3.223

A quick check of a reduced matrix will verify that the

product P A Q = I does indeed hold.r

From the form of C3.21), all the generalized inverses

of the matrix A may be generated. The next set of theorems

prove this in addition to proving the validity of the above

reduction technique.

Theorem 3.7. C9:23 ; 27:15) For any given matrix A

e C m n there exist two nonsingular matrices P e CMxm and Q

C n'cr' such that

Am) and (1 .0 ] C 3. 2!3)

are equivalent.

Proof: See cited reference.

Theorem 3.7 takes the results of Sontag's work CTheorem

3.53 and incorporates it into a computational technique.The

P and Q matrices of the form given in C3.22) are the

matrices required by Sontag and provide the weak generalized

inverse of the original matrix A. However, the real strength

of the ST method is embodied in extending the P and Q
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sub rtrices in accordance with the following theorems.

Theorem 3.8. C9:24) From the matrices defined in

theorem 3.7. an A matrix Cweak generalized inverse) is1,2

determined by the product of the submatrices S and T.

Proof: See cited reference.

This means that the WGI of a matrix A is attainable

simply through elementary row and column operations

performed on the augmented form given by C3. 20). Higher

generalized inverses are obtained using properties of

orthogonality. In particular. the rows Ccolumns) of M CN)

are made orthogonal to the rows Ccolumns) of T CS).

Theorem 3. 9. C9:25-27 ; 27: 33-35) From the matrices

defined in theorem 3.7. if the condition T Mt = 0 holds

then an A matrix generalized inverse is defined by the

product S T.

Proof: See cited reference.

Theorem 3.10. C9:28; 27:33-30) From the matrices

defined in theorem 3.7, if the condition NT S = 0 holds

then an A matrix generalized inverse is defined by the

product S T.

Proof: See cited reference.

The final theorem in this set of theorems comes from

the work of Doma and Murray, who combine the previous two

theorems to provide the conditions under which to produce

the unique Moore-Penrose, generalized inverse, the A

or simply the A*.

Theorem 3.11. C:29 ; 27:33-41) From the matrices
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defined in Theorem 3.7. if the conditions T MT = 0 and

NT S = 0 hold, then the product ST defines the A + matrix

generalized inverse.

Proof: See cited reference.

The ST technique can be summarized by the schematic in

Figure 3. The matrix A gives rise to the initial canonical

form by augmenting A with identity matrices below and to the

right. Through elementary transformations and

orthogonalizations, the initial canonical form is

transformed into the final canonical form. During the

transformation process, each of the A , At 2* 9, A
1.2 1,29 1,2,4'

and the A generalized inverses can be computed.1,2.3.4

In Corollary 3.2.1. Penrose gave a general form for the

solution of the Ax = b equation. The geometry of this

solution form was then briefly discussed, based in large

part upon Strang's work. Presented here as a corollary is a

result of the subspace concept and the ST reduction process.

Corollary 3.11.1. CQ:39 ; 27:25 ; 7:40 ; 19:453) The

equation Ax = b has a solution x if and only if Mb = 0. In

this case the general solution is given by:

x = CSDb + Nz C3.24)

where the matrix z is arbitrary, and the S. T. M, and N

matrices come from the final ST canonical form as shown in

C 3. 23).

A final point regarding the general power of the ST

computational technique is the strong interface it has with

the Fundamental Theorem of Linear Algebra previously
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discussed. Once fully reduced, the final ST canonical form

provides:

" the rank of the matrix A Cdimension of I )

" a basis for the column space, ICA), of A given in
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the S submatrix

0 a basis for the row space, IRCAT, of A given in the

T submatrix

* a basis for the nullspace. 7)CA). of A in submatrix N

o a basis for the left nullspace. CAT ), of A in the

submatrix M

Each of the above are byproducts of the elementary

transformations and orthogonalizations performed to

determine the generalized inverses of a given matrix A.

Common Solutions of Sets of Equations

The final topic addressed in this chapter involves

necessary and sufficient conditions for common solutions of

matrix equations. These sets of equations arise in many

applications, for instance, network design problems or

critical path systems. In the case of constant coefficients

and multiparameter systems, parallel processing techniques

can be exploited to determine solutions to systems more

efficiently. Current hardware and software technology limit

the parallel processing applications for the multiparameter

case, but this section shows that the theory is in place.

Common solutions to sets of multiparameter matrix

equations have been extended from the work done on constant

coefficient matrix equations. However, the details of the

theorem presented are provided for the first time. Previous

work by Morris and Odell C¢) and then by Jones C17) left

these details out.

Mitra followed Penrose's original work with an
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extension to the common solution of two matrix equations

C24:2133. In particular. Mitra used corollary 3.2.2 to prove

the following:

Theorem 3.12. C24:2143 Let Alp A , B, and Ba be

non-negative definite matrices. A necessary and sufficient

condition for the consistent equations:

A X B = C

A X B = C C3.25)

to have a common solution is

A CA +A C CB +B A CA + A 3-C CB +B 3-B C3. 2 )

in which case the general solution is

X = CA +A) CC + Y + Z +C 3 CB + B a) + U - (3.27)

CA + A (A + A ) U CB + B )CB + B 3
1 2 1 2 1 2 1 2

where U is arbitrary, Y and Z are arbitrary matrices

satisfying respectively the equations

A CA + A ) Y = A CA + A ) C C3.28)
2 A 2 1 1 2 Z

Y CB + B ) = C CB + B ) B£ 2 1 1 1 2 2

and

A CA + AD Z = A CA + A C C3.29)
I 1 2 2 I a I

ZCB + B 3 B = C (B + B ) B
1 2 2 2 1 Z I

where the C) notation denotes an A matrix generalized£

inverse.

Proof: See cited reference.

This proof provides an expression for the general

common solution. However, itra's work was limited to the

case of n=2 matrix equations. A generalization to n constant

coefficient matrix equations comes from the work of Morris
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and Odell in 1968 C25). This was then extended to

multiparameter matrices, defined over the ring of polyonal

elements, by Jones C17) in 1987. Since both theorems are

similar in content, only the latter is presented.

Theorem 3.13. C17: 758) Let A. e CPXr and B. e CpXr for

i = 1,... m. Define the following relationships:

C =A D =B C3.303
E I I A

E =A- B F = I-A- A

and
CA k PK  D=B - E

k= k C-i c K 1K 1 C -i

E = E + F C D F =F CI - C)
K K-I K-i K K K K-I K K

Then A.x = B . for i=1. ... m, has a common solution if

and only if C. C D. = D. for i=.... m. In this case the

general common solution is given by

x = E + F z C3.313

where z is arbitrary.

Proof: See cited references for general proof. Since

neither reference provides the explicit proof, this detailed

proof is presented in Appendix B. The proof is a double

induction proof in that both the conditions for existence of

common solutions and the defining relationships for those

solutions are proved using inductive methods.

Apl i cations

These last two theorems, 3.12 and 3.13, provide some

powerful applications. For instance, examine the following

problem:
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A x B C 3.32

for A e C'P q

B e Cpx r

If each row of the matrix equation is treated as a

separate matrix equation, then the results of Theorem 3.13

applies to the resulting system of p matrix equations

Ce:a733. This system may then be solved on a parallel

processing implementation greatly reducing the processing.

Conclusion

This chapter has consolidated much of the theoretical

knowledge in the area of generalized inverses of matrices.

The intent has been to provide a readable, yet thorough,

presentation of the underlying foundations for this thesis

effort. The trend towards multiparameter matrices has been

clearly defined and explained. The extensions of constant

coefficient matrix theory to sets of equations provides a

promising area of research involving parallel processing.

However. it is the multiparameter trend that is the focus of

this thesis. Thus, in the next chapter. some particular

examples are selected and solved using the generalized

inverses of multiparameter matrices.
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IV. Applications

Introduction

While the previous chapter laid the theoretical

groundwork for this thesis, this chapter addresses how to

use the generalized inverse of a multiparameter matrix as a

tool to solve problems arising in optimization. The history

of the generalized inverse supports the trend towards more

work involving multiparameter matrices as a necessity to

keep pace with the ever increasing complexity of today's

problems. The increasing capabilities of modern computer

systems allow researchers to investigate, and solve,

problems that previously took months to solve by hand

C50:2). Before any computer solution can be implemented

however, the theory and technique must be thoroughly

established.

Since the generalized inverse plays a key role in a

diverse range of disciplines, a small cross-section has been

selected. However, the techniques employed are generally

applicable to many other areas. In addition, a couple of

"counter-examples" are provided in examples 8 and 9. These

are labeled counter-examples since the generalized inverse

technique does not provide a value for the optimal solution.

However, though the optimal solution is not found, valuable

information regarding the function can be obtained from the

general form of the solution. The two examples.

Kantorovich's function and a Lagrange multiplier problem,

demonstrate this aspect of the generalized inverse technique
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in nonlinear optimization.

Computing the Inverse

The previous chapter discussed the ST technique for

computing generalized inverses of matrices. Before

demonstrating specific optimization examples, it is best to

detail the workings of the technique. The purpose is to

demonstrate the applicability of the technique to

multiparameter matrices, and to demonstrate the steps in the

algorithm. Later examples leave out much of the

computational detail to conserve space and enhance

readability of this report.

Example I.. C213 Compute the generalized inverses of

the following multiparameter matrix:

A = x xZ+ I C4.13

x y xy +x

Augment this matrix with 2x2 identity matrices below

and to the right to obtain the initial ST canonical form:

A I x xZ +1 1 0 C4.23

xy xy +xy 0 1

1 0

0 1

The A matrix portion of equation C4.a must now be

reduced to an I identity matrix. The ST technique requires
I

the use of elementary transformations to accomplish this

task. As yet r, the rank of the matrix A. is undetermined.

but is computed through the reduction process carried out on
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the A matrix. Recall from the discussion last chapter that

any row operations are carried over to the matrix augmented

on the right. In a similar fashion, any column operations

are carried out on the matrix augmented below the matrix A.

The reduction starts by multiplying the first row by

the polynomial C-xy), and adding the resulting row to the

second row of the matrix. This causes equation C4.23 to

transform to:

C4. 33
x x + 1 0

0 0 -xy I

1 0

0 1

The next step is to multiply column one by the

polynomial C-x), and add the resulting column to column two.

This operation results in the matrix:

C4.43
x I 1 0

0 0 -xy I

I -x

0 1

The upper left element of C4.43 must equal 1. The

easiest transformation is to simply interchange columns one

and two. Once interchanged, the final transformation, which

completes the matrix reduction, is to multiply the new

column one by the polynomial C-x3 and add the result to

column two. These last two operations produce this final
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matrix:

C 4. 530 I 1 0 > T
0 0 -xy 1 > M

-x 1 +x 2

1 -x

S N

The final result of the elementary transformations

producing C4.5) is displayed with the S. N. T, and M

submatrices appropriately labeled. Note the rank of the

matrix A is one since I is of dimension one. From this

form, the computations of Theorem 3.8 from the previous

chapter produce the following:

A~ A =A =ST 1 1 ]D C4.CD

This may be verified by using Penrose conditions C1)

and C2) of Theorem 3.1. To obtain the A inverse,

Theorem 3.9 must be used. This theorem requires the

orthogonality of the vectors comprising the T and 4 matrices

labeled in C4.5). This may be accomplished using a modified

Gram-Schmidt process. This process produces an updated

canonical form matrix, shown here:

C4. 7)

10 1 xy T
x 2y a+ I k~y,+ I

0 0 -xy Iy> M

-x 1+xa

I -x

S N
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From the final ST canonical form provided in C4.73.

Ai the product of the S and T submwtrices, is found as

a result of the following computations:

A 1'2: S7 -x I = C4.8)
x ay a+ I x Zya +

2x -xy 1

CxZyZ+l3 - x

To obtain the A generalized inverse, Theorem 3.101.2Z,4

requires orthogonality between submatrices N and S. Once

again the Gram-Schmidt process is used to produce the matrix

given:

C4. 9)
1 0 1 0

0 0 -xy I

x x 5 +3x 8 +2x

CxZ+1)2+ x Z  Cxa+I2 Z+ x Z

x Z + I -4x 4 -2xz

2 2 -+2 a 2 2ZCx +1) x Cx +i) + x z

From the submatrices in C4.93. the A generalized

inverse is found to be:

A =ST= 2 ) I1 0 C4.103

-X +12+ x z

x a+ I

CxZ+ 2+ xx

x 0

xZ+l3Z+ x2

cxa+l=Z+ x2
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Finally, the results of making M orthogonal to T and S

orthogonal to N are combined in order to produce the

Moore-Penrose, the A I ' or simply the A+ generalized

inverse. The final canonical form used is:

C4.113
0 1 xy

x ya +1 xay z +1

0 0 -xy

x x5 +3x +ax

CxZ+1Da+ x 2  CxZ+1)+ x2

x 2 + -4x'-2x
2

Cx 2 + + x
z  

CX+l2+ X 2

Computing the product of the above S and T submatrices

will produce the A + generalized inverse. This A+ inverse is:

x x y C4.123
Cx2y2+13[Cx +132+ x23 Cxay +1CXa+13a+ x Z

x2 1 Y 2+3xz xxZ+1)

Cx y +13[CX +1) + x I Cx y 2+ICx +13 + x 2

This then is a detailed example of how the ST method

can be used to sequentially compute representatives of all

the generalized inverses of a matrix as well as the unique

Moore-Penrose generalized inverse. The explicit detail

provided in example I is excluded from the remaining

examples. The reason for excluding most of the computational

details from next nine examples is that the examples come

from various areas of optimization theory and the focus of

this work is on finding the general solution using the

generalized inverse, not on the mechanics of computing the
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inverses.

Nonlinear Unconstrained Optimization

Example 2: Rosenbrock's function. C21 22).

Rosenbrock's function, also referred to as Rosenbrock's

banana-valley function C44:41), was specifically devised as

a challenge to gradient-based optimization methods and has

become a test function for testing computer-based

algorithms. As such it is often used in comparison studies

of optimization techniques C44 ; 38:12o-la). The function

possesses a steep sided valley, nearly parabolic in shape,

and is defined as:

fCx.y) = lOOCy - x2 )2 + CI-x) 2  C4.13)

The maximum or minimum pointCs) of this function are

those points for which the partial derivative of the

function evaluates to zero. Whether or not the function has

a minimum or a maximum depends upon the value of the Hessian

matrix at a particular stationary point. Expanding the

function C4.13) produces:

fCx, y) = lOOy2 - aOOx y + lOOx4 + 1 - ax + X C4.14)

and determining the partial derivative, Of-4bx and Of/Oy

produces the system of equations:

400x8 - 400xy + ax = a C4.15)

-aOOx + OOy = 0

which may then be written in the matrix form:

ACx,y) ( x ) = BCx, ) C4.18)
y

where
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C400x 2a -400x C (4.17.)
, -200x 

00

and

BC x. y3 = a0) C4. 18

It isn't known whether or not the A matrix is singular.

but using the generalized inverse technique does not

restrict the computations. Forming the initial ST canonical

form as shown in example I and performing elementary row and

column operations produces the following:

C4.193

400x + 2 -400x 1 0 2 -400x 1 0

-200x 200 0 1 0 200 0 1

1 0 1 0

0 1 x 1

0 2 1 0 1 0 1/2 0

200 0 0 1 0 1 0 1/00

200x 1 1 200x

1 + 20Ox x x 1+ 200x2

The operations performed, for the interested reader to

verify, were:

C13 multiply column two by Cx) and add to column

one

Ca3 multiply column one by COOx) and add to

column two

C3) interchange columns one and two, divide row

one by the scalar 2, and divide row two by

200.
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From this final form, the Ainverse can be computed.

Note that since the rank of A is 2, A has full rank meaning

the A' inverse is also the A- i inverse. This inverse is:

C4. 20)

A=ST20ox 1/2 0 [/~2X
A = = =)(1'

x I+ 200x 0 A200 X/ 1/200 + X

The solution of the system of equations given in C4.15)

is therefore given by:

Y xzA CxY 0 x C.1r~' 1 /200 + X-- ( )~ I42)
which in turn implies that the solution vector Cxy) equals

C1,1). The Hessian, evaluated at the point C1,i) is:

802 -400

2~ ) C4. 22)-400 20

which is positive definite, indicating that the stationary

point Ci,1) is in fact a minimum of the Rosenbrock function

C44: 41).

Implicit Function Theory

An equation of the form FCx y = 0 represents a

relationship between the variables x and y. The set of

points that satisfy the relationship is called the locus of

the equation. The behavior of the function in the vicinity

of some of these points, it's local behavior, is of concern

in analytical geometry and optimization. The study of this

local behavior is often conducted as a result of first

finding the variable y as a function of x, or say x as a

function of y. Through the use of an implicit function, a

complex functional system of the form:
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FCxx x ,x 4) = 0 C4. 2)

GCx x ,x ,x 0

can be simplified into the form of:

FCx Ix ,fCx Ix),gCx Ix = 0 C 4.24)

GCxx ,fCxx )gCx ,x )) = 0

where x,= fCx ,x) and x = gCx ,x2 are the implicit

functions obtained from C4.a3) C33:479-510).

In optimization, implicit function theory can be used

to eliminate variables from systems, thereby reducing the

dimension of the problem. Implicit function theory is also

found in implicit differentiation. In this technique, an

implicit function of one variable is found in terms of it's

partial derivative. Once found, the resulting system of

equations can be solved simultaneously for the maximum or

minimum of the system C3:172-173).

Example 3 C33:141-149). Suppose the common solution to

the following system of equations is sought:

FCx,y.uv:) = x + -xy -3xu + 4yv = 0FC C4. 25)

GCxyuv) = 4xy + x u - 8yv + 2 = 0

The above system may be written in the now familiar

matrix form of Ax - b as the following:

0 4x x -Z)( g) -2) C 4. 25)v

where this particular representation for A matrix is not

necessarily unique.
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This system may be solved for the general solution

using the generalized inverse of the A matrix.

x 2x -3x 4y 1 0 x 2x -3x 4y 1 0

0 4x x -8y 0 1 0 4x x -8y 0 1

1 0 0 0 1 -2 3 0

0 1 0 0 0 1 0 0

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

x 0 0 4y 1 0 x 0 0 4y 1 0

0 4x 0 -8y 0 1 2x 4x 0 0 2 I

1-2 3+X52 0 1 -2 3+x 3 0

0 1 -04 0 . 0 1 -x4 0
0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

x 0 0 4y 1 0 1 0 0 4y/x I/x 0

0 4x 0 0 2 1 0 1 0 0 2-4x 1/4x

2 -2 3+X'2 0 2 -2 3+x,52 0

-1/2 1 0 12 1 - 4

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

1 0 0 0 1/x 0

0 1 0 0 2B.4x 1,,4x1
2 -2 3-ex 2 -8y,-x 0'0C.7

-1.2 1 -x4 2yex s N

0 0 1 0

0 0 0 1

For the interested readers, the elementary

transformations used to reduce the initial ST canonical form

to the final ST canonical form in the above sequence of

matrices were:

CI) multiply column 1 by C-2:) and C3) and add to
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columns 2 and 3 respectively

C2) multiply column 2 by C-xa/4) and add to column 3

C3) multiply row I by C23 and add to row 3

C43 multiply column 2 by C-1/23 and add to column I

C5 divide row I by Cx) and row 2 by C4x)

COD multiply column I by C-4y/x) and add to column 4

In this case the A is obtained by the product of the

S and T submatrices above. The conditions. CST)ACST) = CST)

and ACSDA = A may be verified as holding true. In this case

the general solution of the equation C4.283 is given by the

following form:

x = A b + Nz C4. 283

where z is an arbitrary vector. This general form generates

all solutions to equation C4.25) by appropriate choice of

values for z. This solution is carried out in the following

equations:

1 /X -1 -B12x +ir 1X C4.293
0 1~x]~)+ x%4 2y"Xo2J4x z

0 0 + 10

0 0 0i

for arbitrary z and z 2 elements of z, of C4.M8) above. So

the final general solution is:

x 1 x C3+xa/2) z - Cyx z a
- j+ {2yx)z

0 1z t

Clearly. x cannot assume a zero value as the solutions
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are undefined for that value. Since z is an arbitrary

vector, selecting z= (0.03 yields a specific solution to the

system, namely. x=1 y= -1.. u-0, and v=O.

In more classical implicit function settings,

FCx.yuv3 would have been solved for u. and the resulting

expression substituted into GCxyu.v). The resulting

equation would be solved for v to obtain v-gCx,yD as

discussed above. This implicit function would then be used

to obtain u=fCxy3 again as discussed above. For this

particular problem, this process yields C33:4903:

[ u = fCx, y) = Cxa+2xy)C y-x 2 ) + Cx4 +2xay + Iaxy +13y
3xCay - x 2  C4,31

v = gCx.y:) = x 4 + x y + I2xy + 6

a4y - 4xZ y

These solutions from implicit function theory agree

with the results obtained using the generalized inverse of

the multiparameter system of equations. Choose x=1 and y=

-1/2 and equation C4.313 yiclds values of u = v = 0.

Exam 1e 4. Given the system of homogeneous equations:

C 4. 32){ ya + z 2 + Bxz - 1 = 0

show whether x and y can be considered as functions of the

variable z. One particular method of sulving this problem is

to use Jacobian Determinants. As an alternative approach.

consider the use of the generalized i nver se using a

formulation of the form Ax = b as in the following:
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+=z y C 4. 333
z I

From equation C4.33). the A matrix can be placed into

the initial ST canonical form. This initial form can then be

reduced, using only a series of elementary transformations.

to the following final ST canonical form.

C4. 343

1 0 0 1 0

0 1 0 -Cx+2z)/C y-x-az3 I/Cy-x-z)

1 -1 Cz-y)3Cy-x-2z)

0 1 C x+z) C y-x-2z)

0 0 1

From this final form, the product of the S and T

submatrices produce the A generalized inverse. This1,2

inverse:

y/Cy--Zz3-i -Cy-x-az 1
ST =A = [-Cx+ zCY-X-z) 1 /C y-x-az) C 4.35)

satisfies the consistency condition for the existence of a

solution to C4.333, namely A A 1.b= b, and can therefore be

used to obtain the general solution as given by the

equation, x = AA b + [I - A, Aw, where w is an arbitrary

vector. The final form of the general solution, after

computing the products and simplifying the expressions is:

x C - +ywS+ ZWS -. Cy-x-2z3 1 C4.38
y CI + x-a + Zwa30 Cy-x-az:)

z wl
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Now equation C4.35) is the general form of the solution

to equation C4.333. This implies that all solutions of

C4.33) can be generated by C4.38). through appropriate

choice of w, in particular just the w3 component of w. To

find a solution to this problem, simply choose w = z and thea

general solution becomes:
ix = C -1 + yz + z ) X ( y - x - 2z:) C4. 373

y = C I + xz + z z X C y - x - az)

with z free to take on all values except zero. Thus, x and y

can be expressed as functions of z.

Nonlinear Constrained Optimization

In the unconstrained section. use was made of the

generalized inverse to solve the system of equations arising

when the partial derivatives of the function were set equal

to zero Ci.e. to find the stationary points). In this

section, the problem is that of constrained optimization.

The type of problems addressed involve objective functions

of higher order than quadratic. and concave constraints. The

particular technique used is a generalization of the

quadratic programming technique of Nelson discussed in

chapter II.

Example 5. Consider the following problem C38:3a0):

max x +x 2  C4.38)

s.t. ex 2 + 3x : 9

x , x a- 0

Since the unconstrained maximum of the objective

function is unbounded Ci.e. infinite), the constraint in the
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problem must be a binding constraint. The constraint can

therefore be rewritten as an equality constraint, and in the

Ax - b format as:

Ex 3) [:: t C4.393

For the A matrix in C4.39), a representative of the

A class of generalized inverses can be obtained after1,2

producing and reducing the ST canonical form in the

fol 1 owi ng manner:

0 ]~ 1 -3 x I C440

from which CA )T = CSDTDT Ci/C2x I 0). The solution to•1.2 1

the problem, in the general form, is found using the

equation x = Ai b + CI - A A)z, where z is arbitrary.

This solution is:

x=(: C9 -3z 2  /C2x ] C4. 413
X z" 2

where z e z. A particular solution, obtained by choosing

z = 0, is x = (9/C2x) , 0). Using this particular solution2 -

in the constraint gives the boundary point as x = C-O'4.,0),

and an objective function value of fCx) = 20.25 C38:320).

The question that must be addressed is why choose za as

zero. Since z, and hence x , is free to vary it is sensible

to select the value to get the most gain in the objective

function. The x variable is raised to the fourth power,

while x is only linear. The most gain per unit increase

as
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will come from x as compared to x2. It is therefore

advantageous to allow x as large a value as possible. Due

to the constraints, this requires x to go as low asa

possible, or zero. Thus. the insight gained from the

generalized inverse solution is augmented by knowledge of

the problem and combined with an understanding of the

fundamental subspaces of a matrix to determine the optimal

solution to the problem.

ENxamole 8 The previous example only had a single

constraint, and may therefore have seemed trivial. However,

it served to demonstrate the technique. This next example

provides a more detailed insight. Consider the following

problem C38: 333-335):

mi n -x - x C4.42)
t 2

s.t. P-x - x 2  > 1
1 2

-. 8x - ax 2: -9
1 2

x, . x a 0

In the first stage, each constraint is individually

treated as an equality constraint. The second stage will

consider both constraints simultaneously as equality

constraints. Had the problem been large Ci.e. more

constraints3, the combinatorial considerations of the

subsets of equality constraints in each ttage would have

been significantly more involved.

The first step, of the first stage, is to consider the

constraint x A- x2 = 1. ignoring the second constraint for
tconstraint it t S

the moment. Placing the constraint into the ST format and

....... -- - 'm' mmm am m ndl uS



reducing the augmented form to the final ST canonical form

produces the following:

0 1 0 a1

Using the AT = S T T= CI,0) CI/A) C 1/72 . 0) and the1.2

same formula for the general solution as was used in example

5 yields the following expressions:

ic= [ 2)(IL) [ ( +) (l/)( ixH

2 r Cz 2 + ID/ 2

When this expression is evaluated in the objective

function, the resulting function. fCx) = Cz + I)/ 2, is- 2

minimized when the z variable takes on a value of -1.2

Selecting z = -l produces the particular solution of2

x = CO.-I) and fCx:) = 1. However, this solution violates the

non-negativity constraint for the problem and is thus an

infeasible sol ution.

In a similar manner, the second constraint is now

considered as an equality constraint, C-.Sx - 2x = 93,
1 2

ignoring for the moment the first constraint. This
T

particular constraint produces an A = C-1.25x 10) which

is used in the formula for the general solution to produce

the following expression:
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C9O - aOza 3z Cex ) C4. 45xJ 2]1C z

This form. when used in the objective function,

produces a potential solution of x = CO.4.5) yielding an

objective function value of fCx: = -4.5. However. this

solution is not feasible for the first constraint.

This completes consideration of single constraints. In

the second stage, constraints are considered as equality

constraints in pairs of equations. Since this results in

considering all the constraints, this is the last step for

this particular problem. The solution obtained will be

either feasible and optimal or it will be infeasible. If

infeasible, the problem is inconsistent and the solution

obtained will be the best in a least-squares sense.

Considering both constraints, yields the following

transformation to the final ST canonical form:

C 4. 45)

2 -x 1 0 1 0 1/2 0

-. 8x -2 0 1 0 1 5

0 2 5+x x 2C5+x x )1~~~ 0 2

I x
0 1

0 1

Since the matrix involving both constraints has full

rank. the product of the S and T submatrices not only

produces the A inverse but the A* and A- ' as well. since12

all are the same matrix. This means the general solution

given by x = Ab + CI - A A~z reduces to simply x = A*b and
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is given by:

Sr C + Qx C C4.473

x = 4C5 + xx)

45 - B2x

2C5 + x x 3

This is the expression for all solutions to the pair of

equality constraints. Using these expressions in the

objective function yields the functional form of:

45x + 4x - 80 C4. 483
fCx x) 2 1

4C5 + xx)

The minimum points of C4.48) can be found by computing

the two partial derivatives. f/Ox and f.'Ox , setting the

equations equal to zero, and solving the resulting set of

equations. The partial derivatives are:

Of -- 2OC x 2 - 2 )Cx Z  2) C4.49)

ax I C20 + 4x x ) 2

1£2

of -4C 2x + M)C 2x -45)

Ox 2 C2O + 4x x 2

giving possible, feasible, solutions of C22.5,.),

C.525,.222). and C2.5,2) of which fC2.5.2) = -4.5 is the

best solution and ultimately the optimal solution of the

pr obl em C 38: 335).

Control theory

Example 7. In a 1988 article, Sebek C39) considered a

robust control theory problem of the form:

Axc + By = I C4.503

where A and B are matrices defined over polynomials of n
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unknowns and I is a vector of constants. The example used is

the following:

C1 - vw3 x +vy = 1 C4.513

and solutions to x and y are sought. The A generalized1.2

inverse can be applied to this problem, after first

expressing C4.51) in the Ax b format of:

(1vw v 2 (x} [i 1.) C4. 52)

and using the A matrix in the ST canonical form to obtain

the following transformation:

KVW v 717 0 C4.533
0 11

The A generalized inverse, found by computing the
1°2

product of S and T. is C I , w/v )T. Since the consistency

condition. AA ,2b = b holds, the general solution is given

by x~ = A 12b + CI - A, 2 A~z, for arbitrary z. This general

form works out to the following:

I I vw -v" ZIL C4. 54)

S wIv w -w+(w v I-vw z

=1 + z Cvw) - z (.v)

w"v + Z C w -wv:) + z Cl-wv)

Now the expression in C4.54) is an expression for the

general solution, meaning that all particular solutions to

the problem may be generated by choice of z. These
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particular solutions differ only in the homogeneous portion

of the solution. For instance letting z = C1,03 gives rise

T= 2
to the particular solution of x = Ci+vw , w), which is the

only solution obtained by Sebek. The advantage gained by the

generalized inverse technique is the more powerful general

form of the solution obtained.

Counter examples

The examples presented thus far have shown how the

generalized inverse technique can lead to expressions from

which to determine optimal solutions. However, this is not

always the case. In the next two examples an explicit

solution to the problem is not found, but at the same time

these two examples show that the general form of the

solution can still provide useful information.

Example 8. Another function specifically designed to

test the gradient based optimization techniques is a test

function due to Kantorovich C44:42-433. This function:

fCxy) = C3x2y + y2 _ 1)2 + Cx 4 + xy- - 1)2 C4.55)

can be minimized by solving the system of equations:

S3x2 +y = 1 C4.58)

x + xy = I

Setting the system of equations in C4.51) into the

Ax = b format gives:

3x C4.57)

The A matrix is placed into the ST canonical form and
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reduced using a series of elementary transformations to the

final ST canonical form. This produces the following

transition, from initial ST canonical form:

3xy y 1 0 C4.58)

x xy 0 1

1 0

0 1

to the final Sr canonical form:

1 0 1 0 C4.593
y

0 1 -xy I

x -3x2y x3-3xZy2

o 1

1 -3x

Just as in example 2, Rosenbrock's function, A is a

full rank matrix meaning A+ = A- ' and the solution to the

problem is given by x = A~b, which produces the expression:

11 - xy C 4. B0

fx 9-3xzy2J
x - CSTb = x - 3xy

yC x m -3x 2 y 2

The expression for x is quite complicated. It shows the

dependent relationship between x and y and just how delicate

the process of finding the optimal solution can be. Although

the expression for the general solution obtained using the

generalized inverse proves that a unique solution to the

problem does in fact exist, the problem is that the above
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expression for x does not help find that optimal solution.

In his work on gradient based optimization techniques, Stein

found the best solution to date for the function C4.55) as

x = C.99278 , .305443 and fCx) = .28173 x 10 - "1 C44:433.

Examiple Q. This example is a particular nonlinear,

constrained optimization problem for which the method of

Lagrange multipliers fails C48:5):

mi n Cx z + yZ:) (4.61)

s.t. y 2 - Cx - 13 9 = 0

The generalized inverse technique is generally

applicable to Lagrange multiplier optimization Csee Appendix

A for definition). The Lagrangian function, when

differentiated, produces a system of partial derivatives,

which when set equal to zero, provide the optimal solutions

to the problem.

If there are say m variables, or unknowns, in the

problem, and n constraints, the system of partial

derivatives produces m+n equations and m+n unknowns.

Generally such systems produce a unique solution. The

generalized inverse of the Cm+n)xCm+n) matrix is used to

determine the optimal values of the undetermined multipliers

and the variables of the problem.

For this problem, the Lagrangian function is:

LCx. y.) - Cx a = y)12+ Cy- x+ 3x' _ 3x + 1) C4._2)

Taking partial derivatives. L/Ox, OL/xy, and OL.-OX.

and rewriting the resulting system of equations into the
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Ax = b form produces:(iI5y Xi? -3x 2yX-3yx, ex -3x' IfIx f .3

The A matrix is full rank so again A = A- . The

MACSYMA expert system contains an inverse function, called

INVERTCmatrix) so MACSYMA was used to obtain the A- 1 matrix

for C4.533 C50:5-553. Since MACSYMA does not compute any

generalized inverses, had A been singular, the ST method

would have been used to compute the A". The A-1 matrix

provides the solution to the problem by the formula

x b. The final expression is then:

cax 23+a)yX - x4 + ax) I C4.84)

x ayCCy-4 - 3xya + 3x 5 8xX43 + y ) W

I2 a2 2 J-CC 5X9 + 5x:)y X + Cy - 3x)X + 1)

and

C4. 65
W1

C C I2yd+C- x 4 +18x -24x +lax-8:)y4 +C~x 5 -lax4) y2 :)X+

lay4 +3x -15x +27x -18x a)

Just as in example 8. this final expression does not

yield an optimal solution. However, using the generalized

inverse to obtain the expression for the general solution

demonstrates the non-existence of a finite X. Lagrange

multiplier, for the problem.

Common Solutions

The last theorems in Chapter III were presented to

demonstrate the trend towards multiparameter matrices.
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Another purpose was to lay the theoretical groundwork for

future applications of parallel processing capabilities. The

next, and final, example demonstrates the applicability of

this theory.

Example 10. Consider the following system of the form

of Ax = b C21):

+1 x 2x + X3 C4.e )

2 a 2 Y
x y x y+ xy y y + x y

In this particular example, first the solution to the

equation is found and then the equation is decomposed into a

system of n=2 matrix equations. This system of matrix

equations is then solved individually and also using the

results of Theorem 3.13.

First the A generalized inverse of A is computed.1,2

The transformation from the initial ST canonical form to the

final ST canonical form is given by:

x xz+ 1 0 1 0 1 0
C4.57)

xy x y+xy 0 1 0 0 -xy 1

1 0 -x 1 +x Z

0 1 1 -x

From this the A generalized inverse is found to be:

Ai~ ST = x I 0 = x 0 C4 8

1 0

which when used in the general solution formula used in

other examples. x - A 1B + CI - A Az, yields:
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-x 0 2x+x 3x

I-: ~ °4 1 0--I:°I: I
1" 0 X - x x- 0 y x y +x-

a ~~-X -x z C4 51-ax + x
s  

x )-+x Z'

TSince z = Cz ,z 2 is an arbitrary vector, choosing a

value of z = C1 , x:) will give a particular solution to the

problem. When used in C4.59). this solution is x T= Ix).

Next, reconsider C4.853 as a system of matrix equations

of the form:

Ax =B C4.70)

Ax B

where

A = C x xZ+ 1) B = Cx + x) C4.71)

A = Cx2y x C x2 + x'y)
2 2

The intent is to find a common solution to the set of

matrix equations. In a manner similar to that of C4.57).

each of A and A can be reduced, within the ST canonical
1 2

form, to find an A generalized inverse of the matrix. To

avoid confusion of notation with the subscripts used in

(4.70) and C4.71), these A generalized inverses are
1.2

denoted as A and A respectively through the remainder of1 2

this example.

From the ST computations. representatives of the A and

A; inverses are found. These inverses are:

A1 - ( x A_ x 2 ] C4.72:>
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A check of Penrose conditions CI) and C2) will verify

that these are in fact A inverses of A and A
1,2 1 2

respecti vel y.

Theorem 3.13 requires that each of the conditions

A A B =B and A A-B =B hold for each of the equations ofIi i 22 Z2 2

C4. 70) to have a solution. To demonstrate A A-B =B:

BI=B.(X [ -X ](ax+xs)( 1 ) (a-X+X9) = C473

and to demonstrate A A-B =B
2 22 2

y - 9o+ B(4.74)

= Xy xyx) ( 1'X (;axz+x4y) =(I. ) (ax +X Y] B2

Since (4.73) is true, the general solution to Ax = B

is given by x = A-B + CI - A ADz for arbitrary z. This is

expressed as:

-X ( ~]ax+x ) + [(1 0 ] -[ X( x2+1.)[ z I 475

2 3

ex a-2:X:) + ' X +X) )
;2x + X

s  
-x -x

z  
Z:

1"

Letting z = Cl , x) in the above gives the particular

Tsolution to the problem. x = C1 , x). In a similar manner.

the condition verified in equation (4.743 means the general

solution to A x=B is given by x = AB + CI -A ,Az for z an

arbitrary vector. This expression turns out, after

simplification, to be:

[2xay) ,y C -1 0' 2x z, C 4.70)
0 0 1 z a
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Letting z = C1 . x) as before yields a particular

solution x t = (ca-y)/y , x). Though this appears somewhat

different from the previous result in equation C4.75). it

really is not. If x = C1 ,x), then y=1. If yzl for this

current particular solution, then x = CI , x). So actually

this particular solution is equivalent to the previous

particular solution.

Thus far this example has found a solution to C4. 3

and C4.703. This demonstrates that a common solution to an

equation must satisfy the individual elements of that

equation.

The next step is to actually demonstrate the validity

of the recursive formulas given in Theorem 3.13. Using

C4.703. Theorem 3.13 gives the following expression for the

common solution to the set of matrix equations:

x = E + Fz C4.77)- 2 2-

where z is an arbitrary vector. Using the recursive

relationships of Theorem 3.13, namely:

C 4.78)
E = E + FC-D P =FCI - C-C) C = AF

2 1 22 2 1 22 2 2

D = B - A E E =A-B P = I - A-A
a 2 2 1 1 1 1 i1

results in the following expanded form of C4.77). This form

is the formula that is ultimately evaluated to provide the

common solution to the set of equations:
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S1 C 4. 79)

11 ILAA) J I -A IA I) (AZ-A aAI) tA-A A) [ ]
These computations finally produce the following

expression for the general solution to the system of

equations in C4.703:

C4.80)2 x-x,
T

and letting z C1 . x3 yields x = CI , x, the common

solution to the system of equations C4.70) and the solution

to the problem as originally stated C4.165.

Concl usi on

This chapter focused on using the generalized inverse

of a multiparameter matrix as a technique to help solve

various optimization problems. The technique is useful in

solving systems of equations and sets of equations. For

quadratic programming types of problems, the generalized

inverse provides for an easy to understand methodology to

solve the problem. Finally, current theory regarding

simultaneous solutions of sets of matrix equations was

demonstrated for the case of n-2 matrix equations.
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V. Conclusions and Recommendations

This thesis has examined the application of generalized

inverses of multiparameter matrices. Such matrices arise in

many modern applications, such as multi-input/multi-output

systems, highly nonlinear functions in optimization, and in

modern control theory problems. The use of these generalized

inverses provides, quite often, a powerful analysis tool.

A large part of this thesis dealt with consolidating

the vast amount of theory regarding generalized inverses.

The theorems presented in Chapter III. though not proved in

this work Cexcept for Theorem 3.133. form the basis for the

current research into multiparameter matrix theory. The

format of the chapter was intended to provide an

understanding of the theory as well as an appreciation of

how the research has evolved into the multiparameter arena.

For the first Lime, the ST technique was tied to the

Fundamental Theorem of Linear Algebra. This key concept of

linear algebra was discussed at some length in Chapter III

because there is a crucial link between the concept and the

idea of a generalized inverse. The ST technique bridges

whatever gap may have existed and provides a representative

basis from each of the four fundamental subspaces associated

with any given matrix. In addition, the ST technique can

produce representatives of various generalized inverses

rather than being limited to just computing the unique

Moore-Penrose generalized inverse.
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Also for the first time, an explicit proof was provided

for Theorem 3.13 CAppendix B) which deals with the common

solutions of a system of matrix equations. The recursive

formulas as well as the identities used within the formulas

were proved. This theorem, an extension of work done by

previous researchers C26 ; 17). sets the stage for possible

future applications in parallel processing of systems of

matrix equations, with either constant coefficients or

polynomial coefficients in the matrices.

The main thrust of this research effort was to explore

the applications of the generalized inverse in non-linear

optimization involving multiparameter matrices. This was the

focus of Chapter IV in which various types of nonlinear

optimization problems were solved using the generalized

inverse technique as a basis.

There is a very strong interface between the

generalized inverse of multiparameter matrices, and the

solution to a system of equations. This is easily extended

to the solution of Lagrangian optimization problems since

the partial derivatives of the Lagrangian function yield a

homogeneous system of equations.

The generalized inverse of multiparameter matrices was

shown as providing the capability of extending Nelson's

optimization algorithm to problems of higher dimension than

quadratic. Though the generalized algorithm introduced can

be combinatorially inefficient for large problems, the

algorithm is easy to implement and is sufficient for many
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common optimization problems.

Finally an explicit example of solving sets of matrix

equations for a common solution was shown. This example

demonstrated the applicability of Theorem 3.13 and

highlights a potential area of future research, parallel

processing of matrix equations.

There are some areas of future research that can be

undertaken. First is in the area of the ST computational

algorithm. This technique was first programmed, in FORTRAN,

for purely numerical matrices in 1985 by Murray C27). His

program can be improved upon in the sense of computer

storage requirements and in numerical accuracy.

The ST technique is applicable to finding the

generalized inverses of multiparameter matrices. The ST

technique uses elementary transformations to compute the

inverses. These transformations are easy to implement in a

computer algorithm. Expert systems such as MACSYMA enable

users to work with variable element matrices in symbolic

form. Such sy. tems also provide some kind of capability for

developing macros Csequences of system commands or

procedures) to perform certain functions thereby increasing

the power of the system. There is already at least one macro

in MACSYMA for the generalized inverse C11), but it requires

the use of limits and for large matrices is not as efficient

as the ST technique. One very important area of research

would be to develop the ST algorithm for the MACSY1A

environment. Ideally, this program would be written in LIS
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since MACSYMA is also written in the LISP language.

Another potential area of research is in the common

solutions to sets of matrix equations. In particular, the

application of this theory to a parallel processing

environment. Initially such work would be limited to the

application of constant coefficient matrices. However, the

algorithms developed for constant matrices should easily

extend to multiparameter matrices. Of course computer

capabilities must provide a parallel processing environment

for systems such as MACSYMA in order to extend any parallel

processing algorithms to multiparameter matrices.

Control theory was just briefly touched upon in this

thesis, but a new area of research is in parameterized

families of systems Ci.e. multiparameter matrices) involving

the design of parameterized controllers. Sontag C43)

discusses such a problem in his V985 tutorial article. In

particular would be to design these controllers. "in the

form of a parameterized controller which regulates once its

parameters are properly tuned" C43:3703. It appears this may

be a fertile area of future research.
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ARpendix A: Glossary of Terms

Determinant. Defined as the sum of all signed elementary

products from a square. nxn. matrix A. An elementary product

is any product of n entries of matrix A, no two of which

shall come from the same row or column. The elementary

product is termed a "signed elementary product" when

multiplied by ±1, dependent upon whether the product is an

even or an odd permutation CI:59-70)

Diaqonal Matrix. Matrix with all zero entries except along

the diagonal, which contains any non-zero entries in the

matrix. In more formal terms, the elements a.= 0 if i 0 J.

The diagonal elements are the non-zero elements a whereLj

i = J. Also defined as an upper and lower triangular matrix.

Diagonable. If a matrix A is similar to a diagonal matrix,

then A is a diagonable matrix. See definition of similar

matrices C2:157).

Eiaenvalues. The eigenvalues of a matrix A are the scalar

values, X, for which Ax = Xx has non-zero solutions

C 31: 264).

Eiaenvectors. The non-zero solutions of Ax = Xx, where the

X scalars are the eigenvalues of the matrix A C31:2543.

Elementary transformations. Very commonly referred to as

elementary row and column operations. These are operations

performed on a matrix that preserve the matrices order and

rank. These transformations are:

C13 interchange any rows Ccolumns)
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C2) multiplication of each element in a row Ccolumn) by

a non-zero scalar

C3) the addition of a scalar multiple of one row

Ccolumn) to another row Ccolumn)

Changing the term scalar in C2) and C3) to polynomial

defines the elementary transformations on polynomial

Cmultiparameter) matrices C2:39.188).

Expert System. Computer system Cprimarily software) that is

programmed to exhibit capabilities normally attributed to

human experts in the particular specialty area. In the

current context the expert systems exhibit symbolic.

algebraic reasoning normally associated only with human

mathematical reasoning.

Field. A field is a communitive division ring. See

definition of ring C10:108).

Gradient. If the function FCx: is differentiable at a point

x0 , then the associated vector of partial derivatives

evaluated at x is called the gradient vector. The gradient

vector provides information regarding the direction of

steepest ascent Cdescent) along a function from a particular

point. Thus, it is the key aspect of iterative optimization

techniques.

Hessian. Matrix of second partial derivatives. Valuable in

numerical analysis and optimization theory as the Hessian of

a function provides information about the stationary points

of a function.

Homoaeneous set of eguations. A homogeneous set of equations
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is of the form:

Ax = 0

Thus every solution to the system is a member of the

nullspace of the system. If there are more unknowns in the

system than there are equations, then the system has

non-trivial solutions. This means there is a solution to the

system other than simply x = 0 C48:58)

Identity matrix. Square, diagonal matrix with all diagonal

elements equal to 1. Also the multiplicative identity of the

algebraic field of matrices.

Inner Product. Cdot product) Sum of the element-wise product

of two vectors. For example.

X Y = _ Cxy)

Laaranae multipliers. Optimization method involving the

derivatives of the objective function and the equality

constraints of the problem. A maximum or minimum point

occurs when the derivative of the objective function equals

zero. The constraint derivative already equals zero Csince

the derivative of a constant right hand side is zero).

Rather than solve for each variable in the constraint and

back solve the system of equations, the constraint is

multiplied by an undetermined value, X., and added to the

objective function. The partial derivatives of the resulting

equation produces n equations in n unknowns which can be

solved uniquely. Usually. the system is solved for the X.
L

values and the optimal x. values can then be determined
J

C3: 174).
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Least-scuares. Method of estimating parameters of an

equation where the function minimized is the squared

difference of the actual data value and the value predicted

by the current set of estimated parameters.

Markov chains. The most common model for which the input

and output relationship is random is the Markov process.

When this process is discussed with respect to discrete

time, discrete range, the process is termed a Markov chain.

The Markov chain, with n states in the state space, is

typically characterized by an nxn matrix of probabilities of

transition from state to state C35:992).

Minimum-norm. The minimal value of the function lJA-bi.

where x is a vector of estimated parameters.

Minimum-variance. A minimum-variance estimator of a

parameter is a random variable with the property of having

the smallest variance among any other estimators of that

parameter C25:15).

Maximum Likelihood Estimation CMLE). A parameter estimation

technique that maximizes the probability Cor likelihood) of

the observed sample Ca3:37).

Norm of a vector. Also referred to as the length of a

vector. Denoted I x 1, the norm is defined as the square

root of the inner product of a vector with itself. For

n x e x • x Cp:l.p.

Nullpac. The set of solutions to Ax = 0. forms a vector

space called the null space. In more abstract terms, the

nullspace is the set of points that the transformation
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matrix. A. maps into the point zero. The null space is the

kernel of the transformation given by the matrix A. The

dimension of the nullspace is defined as the nullity.

Orthogonal. Two vectors are said to be orthogonal if their

inner product Cdot product) is equal to zero. Orthogonal

vectors intersect at 90 ° angles Ci.e. they are

perpendicular). A square matrix is orthogonal if AA T
*
, and

the equality ATA = AAT = I holds C:103).

Orthonormal. In general terms, if a set of vectors are

mutually orthogonal, and each has a norm of one, the set is

an orthonormal set of vectors C2:105)

Parallel processina. Computer processing of more than one

task on the same computer. simultaneously.

Positive definite matrix. A matrix, A. is positive definite

if it's quadratic form. xTAx > 0 for all x P 0 C38: 78).

Rank of a matrix. The rank of a matrix A is the dimension

of the row and column space of A. The dimension of the row

and column space is defined as the number of vectors

required to span the space C1:1573.

Ranae. The range of a matrix A, or the transformation

induced by A, is defined as all possible values of Ax.

Ring. A ring is a set with the binary operations of

addition and multiplication. The addition operation is

communitive with additive identity 0. If the multiplication

operation is communitive. the ring is termed a communitive

ring. If the ring contains a multiplicative identity. such

as 1. and each element has a unique multiplicative inverse
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in the ring, the ring is called a division ring C10:195).

Set, Subset. A set is a well defined collection of objects.

A subset is itself a set. but also entirely contained within

some other set of equal or larger size CIO:2:).

Sinnular matrices. A square matrix. A. that does not

possess an inverse matrix. A -1 . In these cases, the

determinant of A. detCA), is zero. All non-square matrices

are singular matrices, with an undefined determinant.

Slack variable. A slack, or surplus, variable represents

the positive difference between the left and right hand side

of an inequality equation. These variables are used in

linear programming CLP) to transform inequality constraints

into equality constraints. For example, adding the slack

variable S allows:

2x + x- 3x 5 25 o 2x + x- 3x + S = 25
1 2 a 1 2 9 1

Smith form. Diagonal form of a multiparameter matrix, ACX).

where the diagonal polynomial elements. f.CX). are monic and
L

f.CX:) divides f CX):. for every i. These polynomial
L i+1

elements are the invariant factors of ACV). If each f.C\)=I.
L

the identity matrix, each f.CX) is called a trivialL

invariant factor C2:188.

Stationary Doint. Point of the surface of the function

where the function is neither increasing nor decreasing.

within a sufficiently small region about the point.

Similar matrices. Two nxn. square, matrices, A and B. are

similar if there exists some non-singular matrix, P. such

that B = P- 1 A P. The matrices A and B are said to be
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equivalent matrices. This definition also holds if the

matrices A and B are defined over the ring of polynomials

C2: 153.

Triangular matrix. The two triangular matrices are upper

and lower triangular matrices. In an upper triangular

matrix, each a. = 0 if i > J. Conversely, a lower triangular
Lj

matrix requires each a - 0 if i < J. If a matrix is bothU)

upper and lower triangular, the matrix is a diagonal matrix.

Unbiased estimator. For an estimator of a parameter to be

unbiased, the long-run average, or expected value, of the

estimator should be the parameter being estimated C25: 14).
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Appendix B: Proof of Theorem 3.13

I ntr oducti on

This theorem has a couple of important uses. First, it

provides necessary and sufficient conditions for the

existence of a common solution to a system of matrix

equations. Secondly, it provides a recursive algorithm for

computing the common solution to the system. The work in

this appendix verifies, by mathematical induction, the

necessary and sufficient conditions and the recursive

algorithm supplied by the proof.

All matrices are assumed defined over the complex ring

of polynomials. Cn x . Further, to avoid confusion regarding

the subscript notation, a generalized inverse is denoted as

A-. Subscripts denote matrix numbering only.

The method of proof is to first verify the necessary

and sufficient conditions for the system of equations. The

next step is to demonstrate the validity of the general

solution expression.

Theorem 3.13

Let A e CPxr and B. Cpx for i = D.... m. Define the
L L

following recursive relationships:

C= A D= B CB.1)

E =A- B F= I -A A

and
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= = - -.

Ck k K-i DK IK K K-I

E = E + F C- D F = F CI - C C )K K-i K-I K K K K-i K K

Then A.x = B.. for im.... m has a common solution if

and only if C. C. D. = D for i1.... m. In this case the
L L L L

general common solution is given by

x = E + F z CB.23
in i

where z is arbitrary.

Proof

Case n=1.

Consider the following system of equations:

Ax = B CB. 3)
1- I

From Corollary 3.2.1. the system of equations given by CB.3)

has a solution if and only if the following consistency

condition is true:

A A-B =B CB.4)

The solution then is given by the equation:

x = A-B + CI - A-A)z V z arbitrary CB. 5)

-i iI- -

Using the recursive definitions provided in the

theorem, equation CB.1), and directly substituting these

into equation CB. 4), an equivalent form becomes:

C CD =D CB.5)

and the general solution. CB.5) is equivalent to:

x = E + F z V z arbitrary CB.7)
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Case i =2.

Consider the following system of equations:

Ax B CB. 8)
I- I

The necessary and sufficient conditions are that

C 2C -D 2=D. This may be expanded out using the definitions as

in the following:

CB. 9)

C ZC 2D =D 2- (A ZC - A A (A2CI - AA )YD 2=D2

Consider the expression (A.d - AA A)) Suppose that A

and A are matrices defined over Cl"Xq . then CI-A A is qxq.
2 1 1

and the entire expression is pxq. Since the expression.

p = (A 2C - A A) is a matrix. and an element of I~q

there exists a generalized inverse. P , such that PP P = P.

Thus equation CB.G) reduces to simply D . This verifies the

necessary and sufficient conditions.

The general solution is given by:

x = E + F z V z arbitrary CB. 10)

Again using the recursive definitions. CB.1O) can be

expanded out to the following form.

x = A-B + CI-A A )CA -A A-A )-CB -A A-B ) +
11 1 2 11 2211CB. 11)

CI-A A) I - CAa-A Z A-A )-CA 2 -A2 A I A))z

Now that the formula is in terms of the matrices given
in CB.8), the solution is easily verified. Premultiply by A

and CB.11) becomes:



CB. 12 )

A x = A A-B + CA -A A-A )CA -A A-A )CB -A A-B ) +

I~ 11 1 11 2 2 11 2 2 1 1

CA I-A IAAL)r(I -CA -A 2A IA)1CA 2-A A IA)]z

Since CA-AAA) = CA- A) = 0. CB.12) reduces to:

A x = A AB =B CB. 13)

Premultiply CB.11) by A and the result is:
2

CB. 14:)
A x = A A-B + CA -A A A )CA -A A-A )-CB -A A B ) +

1 2 2 1 2 1 2 2 1 1 2 2 11

CA-A AA. (I - CA -A A-A )CA -A A)I]Az

The homogeneous portion of CB.143 falls out of the

equation, as demonstrated:

CA-AAA)(I - C-A AAA)CAAAA CB.15)

CA -A A-A ) - CA -A A-A )CA -A A-A )-CA -A A-A)2 21 2 21 2 211 2 211

CA -AA A) - CA -A AA )= 0
2 2 11 2 2 1 1

Furthermore. CA -A A-A )CA -A A-A )-CB -A AB) is
2 2 1 1 2 2 1 1 Z 2 1 1

equal to CB -A AB I. Thus CB.143 becomes:2 211

A x = A AB + B -A AB = B CB. 15)

2- 21 2 21 t 2

Case n=3.

Consider the following system of equations:

Ax = B

A x =B CB.17)
2- 2

Ax = B
aI- a

The necessary and sufficient conditions are that
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C C D =D . This may be expanded out using the definitions as93 9

in the following:

(C A -AA - A) -C A -AAA A A- A) CA -A A-A )o

CB. 18)

A-A AA) -CA -AAACA A-A AA) CA A-A 2 AA)]
a a911 2 2 1 A 2 2 1 1 •

where the D term has not been expanded. Just as in the n=2S

case considered above, each term in parenthesis is

considered. It is already established that P=CA -A A A) is2 2 i

pxq, provided each of the A matrices are pxq. In a similar
L

manner, the R=CA -A A-A ) expression can be shown to be a3 91i1

pxq matrix. Thus CB. 18) may be rewritten as:

CR-RPP )CR-RPP) D CB.19)9

The expression CB.19 ) is equivalent to CB.18, just

easier to read. From CB.19), it is easy to see that the

matrix defined by CR-RPP) and its generalized inverse

CR-RPP) cause the following to hold true:

C C-D = CR-RPP)CR-RPP) D = D CB. 20)
99S9 9 9

This then verifies the necessary and sufficient

conditions for the case i=3. The general solution is then

given by the expression, x = E + F z V z arbitrary, which,

when expanded out using the recursive definitions, is

equivalent to the following:

x = A-B + CI-A-A )CA -A A-A )-CB -A A-B) + CB.21)
I1I 1 1 2 2 11 2 2 11

CI-A-A ) (I - CA 2 -AZA-A I)-CA -AZ AA)J
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(C A I AAI -c AAA-Az I C A A ))

( B -A A-B )-CA -A A-A )CA -A A-A )-CB -A A-B I +
C I I Z 32 2 1 2 2 1

CI-A A)(I - CA-AAIA ) CAz-AA A)

- A -A AAA )-CA -A A-A )CA -A A-A )-CA -A AA)J9 91 3 311 2 91 2 I 21l

This expression is verified by premultiplying the
expression by A,. A.. and A . First the A solution is

verified:
C B. 22 )

A x = A A-B + CA -A A-A 3CA -A A A )CB -A A-B ) +

A I -A I A I A3 (I 2 2 2 21 2 A

C A -A AA)( fI - CA -A AA A-CA -A AA

CB-A A-B :)-CA -A A-A CAAAA-A 3-CBA-A A ) +

9 1 aa1 1 2 2 11 2 2 1 1

CA <I-A IA i , (I - CA A -A 2A IA' 1-3CA 2-A 2A AI A °

-(CA-A ABIAt-CA 9 -A A-A )CA -A A-A )CB -A A i )  +3 111 2291 1 2 2 11 J 2I

[(C A-AAA -CA -A 9 A-A )CA -AA I A )CA -A AIA 1 ~

Since the expression CA I-A AA I A3 - A = 0, the

entire expression reduces to:

A x = A A-B =B CB.233

Premultiply CB. 21 by A to obtain:2
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C B. 24)

A x = A A-B + CA -A A-A )CA -A A-A )-CB -A A-B ) +
2 2 1 1 2 2 1 1 2 2 1 1 1 2 2 I

CA-A A I - CA 2-A 2AA 1-CA-AzAIA )1  -

(CA -AAIA:)-CAS-AAIA DCA -A A-A CA -A A-A I

(C B-A A )-CA -A A-A )CA -A A-A )-CB -A A-B ) +

CA_ -A 2 A A (I- CA -A A A CA -AA A)) 0 -

(C-A C-A A Ai-CASA- AI)CA -A AACA-A A A

(C A-AAA )-CA -A A-A CA -A AA CA-AA

Next consider the terms in CB. 24) indicated by the

arrows. Each of these simplify to:

CB. 253

( A -A A A) -CA -A A A) CA -A A A) -CA -AA A) -

(CA -AA A i) - CA -A A A)) 0

This causes the entire CB. 24) expression to simplify to

just:

A x = A A-B + CB- A A-B) = B CB. 25)2- 2 1 1 2 2 1 1 2

Premultiply CB.21) by A to obtain:
S C B. 27)

A x =AAB + CA -AAA)CA -AAA:)CB-AAB )+
I 1 3 SI 1 2 2 11 2 2 1 1

CA -AaA A) (I - CA -A AA CAa-AAA)

(CAA A A )-CA -A A A 3CA -A A A D CA -A A A)J

[C B-A AIBI -CA-AAIA IX Aa-Aa AIA-CB2 -A 2 AIB1 ) 1 +
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CA -AAA) -CA -A. A ACA -A A A

-CA-A AiA- 3 -C A -A AA A3 CA -AmA~At i3-C A -AA Al3

a 3 1193 9 1 1 2 2 11 2

CA -A A-A :)-CA -A A-A :)CA -A A-A :)-CA -A AA

Consider the expression pointed to by the first arrow

in CB.273. This multiplies out to:
CB.28)

[CA -A A A ) -CA -A AA CA -A A A CA -A A-A )l3. 311 3 31 2 21 2 211) .

([CA -A A-A )-CA -A A-A )CA -A A-A )-CA -A A-A )- 03 311 3 31 2 211 2 21 U

(C B -A A-B D-CA-A A-A )CA -A A-A 3-CB -A AB)

= CB -A A B )-CA -A A-A )CA -A A-A )-CB -A A B )
a 1 1 a 2 i i 2 21 1 2 2 1 1

The expression pointed to by the second arrow in CB. 27)

reduces to the following:

CB. 29)

(CA -A A-A -C A-AAA) CA -A A-A) CA -AAA) -

(CA -A A-A 1 -CA A-AA ICA 2 -A 2 AA 1 -CA 2-A AA = 0

Using CB.28) and CB.29), the expression for the general

solution. CB.27), reduces to:
i Ca. 30)

A x = A A-B + CA -A A-A )CA -A A-A )-CB -A AA ) +

a- I1 I 911IA 2 211 a 2 211

B - A A-B- CA -A A-A )CA -A A-A )-CB -A AA) = B
3 311 3 311 2 211 2 2 1 9

Suppose, for any k, A.x = B. for i=I.... k has a common

solution if and only if CCD= D. for i,.. .k. And

suppose this solution is given by:
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x = E + F z V z arbitrary CB. 31)

Case n=k+l.

Consider the following system of equations:

A x= B C B. 323

A x8

If the common solution to A k+x=Bk i is the same as the

common solution to the set of the first k equations, then:

A kiCEk + F kz) = Bk CB.33)

A AF k  m B k + A k+E k

which, from the definitions, is equivalent to

Cke i Z = Dke i  CB.34)

For CB.34) to have a solution. Corollary 3.2.1 requires

that C C D =D . In this case, the general solutionkeg kei keg keg

is:

z = C-D + CI - C C ) z CB. 35)
- kei kei kei keg -

The expression in CB.35) can be used along with CB.31)

to conclude that for CB. 32) to have a common solution.

Ck+iCk+tDk+ i = Dk i  C B. 5

and the general solution is:

x = Ek + F z CB.373

= Ek + F k (Ck. D k+1 + CI - Ck..Ck.1 z)

=E k + k FC D + FCI C C z

Using the definitions for the Ek and Fk terms defined in

the theorem, and updating for the current situation:
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Ek- i  E k + FkCk+1Dk+1 C B. 38)

Fk1 Fk CI-k ki C k+1
FP =PFCI -Ck C)~i

and replacing in equation CB. 37:) causes the general solution

expression to reduce to:

x =E + FkCk~Dk i + F kCI - C kCkiz CB.39

k+ k ki zi i i
Ek~= + Pk z

Since k is an arbitrary number of equations, this holds

true for all k. This completes the proof.
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This thesis examines the applications o the

generalized inverse of a matrix. In particular, use is made

oa the generalized inverse of a matrix containing variable

elements. Such matrices are referred to as multiparameter,

polynomial, or variable element matrices. The notion of a

generalized inverse in fact "generalizes" the concept o a

matrix inverse. A matrix inverse exists only for square,

non-singular matrices. The generalized inverse extends this

notion to non-square. singular matrices. The classical

matrix inverse, when it exists, is a unique element of the

set of generalized inverses for the matrix.

Many modern problems involve multiparameter matrices.

The ability to obtain inverses tor such matrices, both

singular and non-singular, is a necessity in solving these

problems.

This thesis consolidates the theory o generalized

inverses, including extensions to multiparameter matrices.

An in depth discussion is made o the ST method or

computing all generalized inverses o a matrix as well as

the strong interface between the ST method and the

Fundamental Theorem o Linear Algebra. Finally selected

application problems are solved demonstrating the utility of

the generalized inverse in such problems.


